Enthalpy derivation differential equation

Mardonio
Messages
1
Reaction score
0
Homework Statement
A state equation for a certain gas is ##(P + b)v = RT## and its internal energy is ##u = aT +bv +u_o##

show that $$(\frac {\partial H} {\partial v})_P = \frac {C_p T} {v}$$
Relevant Equations
--
Good evening,
unfortunately I'm pretty lost in this problem.

I tried to use the chain rule $$(\frac {\partial H} {\partial v})_P = (\frac {\partial H} {\partial T})_P (\frac {\partial T} {\partial v})_P$$ and using some Maxwell relations but it doesn't work very well.
I know that $$T = (\frac {\partial H} {\partial S})_P$$ but I don't know how I would get to the answer.

I would be very happy if somone helped me.

Thanks.
 
Last edited:
Physics news on Phys.org
All you need to do is to use the gas law. The Maxwell relation is unnecessary for this problem.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top