Enthalpy derivation differential equation

Mardonio
Messages
1
Reaction score
0
Homework Statement
A state equation for a certain gas is ##(P + b)v = RT## and its internal energy is ##u = aT +bv +u_o##

show that $$(\frac {\partial H} {\partial v})_P = \frac {C_p T} {v}$$
Relevant Equations
--
Good evening,
unfortunately I'm pretty lost in this problem.

I tried to use the chain rule $$(\frac {\partial H} {\partial v})_P = (\frac {\partial H} {\partial T})_P (\frac {\partial T} {\partial v})_P$$ and using some Maxwell relations but it doesn't work very well.
I know that $$T = (\frac {\partial H} {\partial S})_P$$ but I don't know how I would get to the answer.

I would be very happy if somone helped me.

Thanks.
 
Last edited:
Physics news on Phys.org
All you need to do is to use the gas law. The Maxwell relation is unnecessary for this problem.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top