Entropy due to this irreversible process

Click For Summary
SUMMARY

The discussion centers on calculating the entropy change in an adiabatic container filled with water, where a propeller performs work on the water. The key equations utilized include the first law of thermodynamics, expressed as $$dU=\delta W_{prop}$$ and $$dU=TdS-PdV$$, with the condition that $$dV=0$$. The entropy change is derived as $$dS=dU/T$$, and for a reversible process, $$\Delta S = mC\ln\left(\frac{T_i+W/mC}{T_i}\right)$$, where $$W$$ is the work done, $$m$$ is the mass of the water, and $$C$$ is its specific heat capacity.

PREREQUISITES
  • Understanding of the first law of thermodynamics
  • Familiarity with state functions, particularly entropy
  • Knowledge of reversible and irreversible processes
  • Basic concepts of heat transfer and specific heat capacity
NEXT STEPS
  • Study the implications of the first law of thermodynamics in closed systems
  • Explore the concept of entropy as a state function in thermodynamic processes
  • Learn about reversible and irreversible thermodynamic cycles
  • Investigate the calculation of entropy changes in various thermodynamic systems
USEFUL FOR

Students and professionals in thermodynamics, mechanical engineers, and anyone involved in energy systems analysis will benefit from this discussion.

Simobartz
Messages
13
Reaction score
1
Homework Statement
There is an adiabatic container filled with water. The volume of the container is fixed and inside the continer there is a propeller electrically connected to the outside. If the work done by the propeller on the water is ##\delta W_{prop}##, what is the entropy generated due to irreversibilities?
Relevant Equations
$$dU=TdS-PdV$$
I think the solution is:
$$dU=\delta W_{prop}$$
$$dU=TdS-PdV$$
$$dV=0$$
then, $$TdS=\delta W_{prop}$$ and so $$dS=dU/T$$
and by the way, it correct to say that, if the transformation between the initial and the final state would happen in a reversible way then the heat transfer could be calculated as
$$dS=\delta Q_{rev} /T$$
$$\delta Q _{rev}=TdS$$
$$\delta Q_{rev}=\delta W_{prop}$$
 

Attachments

  • tempImageE1vYAx.png
    tempImageE1vYAx.png
    23.4 KB · Views: 122
Physics news on Phys.org
Simobartz said:
Homework Statement:: There is an adiabatic container filled with water. The volume of the container is fixed and inside the container there is a propeller electrically connected to the outside. If the work done by the propeller on the water is ##\delta W_{prop}##, what is the entropy generated due to irreversibilities?
Relevant Equations:: $$dU=TdS-PdV$$

I think the solution is:
$$dU=\delta W_{prop}$$
$$dU=TdS-PdV$$
$$dV=0$$
then, $$TdS=\delta W_{prop}$$ and so $$dS=dU/T$$
and by the way, it correct to say that, if the transformation between the initial and the final state would happen in a reversible way then the heat transfer could be calculated as
$$dS=\delta Q_{rev} /T$$
$$\delta Q _{rev}=TdS$$
$$\delta Q_{rev}=\delta W_{prop}$$
You have the right idea. Since entropy is a state function, entropy change does not depend on the process in going from the initial state to the final state. So it is a matter of finding a convenient reversible path from initial to final state and calculating ##\Delta S = \int_{i}^{f}\frac{dQ_{rev}}{T}## along that path.

The equivalent reversible path would be heat flow into the water increasing internal energy by an amount equal to the work done.

Since W=Q=mC(Tf-Ti), [where m is the mass of the water and C is its specific heat capacity], ##T_f=T_i+W/mC## and ##dW = dQ = mCdT##.

##\Delta S = \int_{T_i}^{T_i+W/mC}\frac{dQ_{rev}}{T} = \int_{T_i}^{T_i+W/mC}\frac{mCdT}{T} ##
So:
##\Delta S = mC\ln\left(\frac{T_i+W/mC}{T_i}\right)##

AM
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
14
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K