Equation to give the lookback time as a function of redshift

happyparticle
Messages
490
Reaction score
24
Homework Statement
Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations
##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift
Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
 
Physics news on Phys.org
happyparticle said:
Homework Statement: Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations: ##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift

Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
I believe you have some typographical errors. The formula for ##z## should read $$z \approx H_0(t_0-t_e) + \left(\frac{1+q_0}{2} \right)H_0^2(t_0-t_e)^2.$$
This is an approximate expression that assumes ##H_0(t_0-t_e)## is small. So, the equation expresses ##z## to second order in ##H_0(t_0-t_e)##.

For convenience, let ##x = H_0(t_0-t_e)## and ##b = \large \frac{1+q_0}{2}##. So, we may write the relation as $$z \approx x+ bx^2$$ where ##x## is a small first-order term. When inverting this, you only need to get an approximate expression for ##x## in terms of ##z## that is accurate to second order in ##z##.

Can you see a way to do that?
 
  • Like
Likes MatinSAR, happyparticle and Delta2
I can't see it. I tried a taylor's series but I don't get the same result.

I made a mistake. I think it works with a Taylor's series around z=0.

Thank you! I would not have seen it without your help.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top