Equation to give the lookback time as a function of redshift

Click For Summary
SUMMARY

The discussion focuses on deriving the lookback time as a function of redshift using the equation provided in Barbara Ryden's "Introduction to Cosmology." The formula for redshift is corrected to read as \( z \approx H_0(t_0 - t_e) + \left(\frac{1 + q_0}{2}\right)H_0^2(t_0 - t_e)^2 \). The participants clarify that the inversion of this equation can be approached using a Taylor series expansion around \( z = 0 \), leading to the final expression \( t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2] \).

PREREQUISITES
  • Understanding of Hubble's constant (\( H_0 \))
  • Familiarity with the deceleration parameter (\( q_0 \))
  • Knowledge of redshift (\( z \)) in cosmology
  • Basic calculus, specifically Taylor series expansion
NEXT STEPS
  • Study the derivation of the Taylor series and its applications in cosmology
  • Explore the implications of the deceleration parameter (\( q_0 \)) on cosmic expansion
  • Learn about the significance of Hubble's constant (\( H_0 \)) in observational cosmology
  • Investigate the relationship between redshift (\( z \)) and lookback time in different cosmological models
USEFUL FOR

Astronomers, cosmologists, and students of physics who are interested in understanding the mathematical relationships governing cosmic expansion and redshift calculations.

happyparticle
Messages
490
Reaction score
24
Homework Statement
Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations
##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift
Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
 
Physics news on Phys.org
happyparticle said:
Homework Statement: Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations: ##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift

Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
I believe you have some typographical errors. The formula for ##z## should read $$z \approx H_0(t_0-t_e) + \left(\frac{1+q_0}{2} \right)H_0^2(t_0-t_e)^2.$$
This is an approximate expression that assumes ##H_0(t_0-t_e)## is small. So, the equation expresses ##z## to second order in ##H_0(t_0-t_e)##.

For convenience, let ##x = H_0(t_0-t_e)## and ##b = \large \frac{1+q_0}{2}##. So, we may write the relation as $$z \approx x+ bx^2$$ where ##x## is a small first-order term. When inverting this, you only need to get an approximate expression for ##x## in terms of ##z## that is accurate to second order in ##z##.

Can you see a way to do that?
 
  • Like
Likes   Reactions: MatinSAR, happyparticle and Delta2
I can't see it. I tried a taylor's series but I don't get the same result.

I made a mistake. I think it works with a Taylor's series around z=0.

Thank you! I would not have seen it without your help.
 
Last edited:
  • Like
Likes   Reactions: MatinSAR

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
9K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K