Equation to give the lookback time as a function of redshift

happyparticle
Messages
490
Reaction score
24
Homework Statement
Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations
##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift
Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
 
Physics news on Phys.org
happyparticle said:
Homework Statement: Inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)## to give the lookback time as a function of redshift ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]##
Relevant Equations: ##H_0## is the Hubble's constant
##q_0## is the deceleration parameter
##z## is the redshift

Hi,
I'm currently reading the introduction to cosmology second edition by Barbara Ryden and at the page 105, the author says we get ##t_0 - t_e = H_0^{-1}[z - (1 + \frac{q_0}{2})z^2]## by inverting ##z = H_0(t_0 - t_e) + (1 + \frac{q_0}{2}H_0^2(t_0 - t_e)^2)##.

However, I can't figure out how she got this result.
Any help will be appreciate.

Thank you
I believe you have some typographical errors. The formula for ##z## should read $$z \approx H_0(t_0-t_e) + \left(\frac{1+q_0}{2} \right)H_0^2(t_0-t_e)^2.$$
This is an approximate expression that assumes ##H_0(t_0-t_e)## is small. So, the equation expresses ##z## to second order in ##H_0(t_0-t_e)##.

For convenience, let ##x = H_0(t_0-t_e)## and ##b = \large \frac{1+q_0}{2}##. So, we may write the relation as $$z \approx x+ bx^2$$ where ##x## is a small first-order term. When inverting this, you only need to get an approximate expression for ##x## in terms of ##z## that is accurate to second order in ##z##.

Can you see a way to do that?
 
  • Like
Likes MatinSAR, happyparticle and Delta2
I can't see it. I tried a taylor's series but I don't get the same result.

I made a mistake. I think it works with a Taylor's series around z=0.

Thank you! I would not have seen it without your help.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top