Equation With Integer Solutions

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The equation $a^2(b-2)+b^2(a-2)+28=0$ has been discussed for integer solutions, with participants confirming the correctness of solutions provided. Albert's contributions were acknowledged as accurate, and a clarification was made regarding the inclusion of the plus-minus sign in the final solution. The discussion emphasizes the importance of considering all cases when solving such equations.

PREREQUISITES
  • Understanding of quadratic equations
  • Familiarity with integer solutions in algebra
  • Basic knowledge of mathematical notation
  • Experience with problem-solving techniques in mathematics
NEXT STEPS
  • Explore integer solution methods for quadratic equations
  • Research the implications of the plus-minus sign in algebraic solutions
  • Study the role of coefficients in polynomial equations
  • Learn about mathematical problem-solving strategies for complex equations
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving polynomial equations for integer solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the following equation for integer solutions:

$a^2(b-2)+b^2(a-2)+28=0$
 
Mathematics news on Phys.org
anemone said:
Solve the following equation for integer solutions:

$a^2(b-2)+b^2(a-2)+28=0---(A)$
suppose the original equation $A$ can be factorized as $(B)$ or $(C)$
$a^2(b-2)+b^2(a-2)+28=0----(A)\\
(a^2-x)[(b-2)-\dfrac{28}{x}]=0---(B)\\
\therefore x=1,\,\, or\,\, x=4\\
\rightarrow a=\pm 1\,\, or \,\, a=\pm 2--------(1)\\
(a-y)[a(b-2)-\dfrac{28}{y}]=0---(C)\\
\therefore a=y=\pm 1,\pm 2,\pm 4,\pm 7,\pm 14,\pm 28---(2)$
for $a,b\in Z$
check $(1)(2)$
the only solution :$a=2,b=-5$ will satisfy (A)
by symmetry:
$\therefore (a,b)=(2,-5) \,\, or \,\, (a,b)=(-5,2)$
 
Last edited:
Thanks Albert for participating, and your final solution is correct.

My solution:

$a^2(b-2)+b^2(a-2)+28=0$

$a^2(b-2)+b^2(a-2)+32=4$

$a^2b-2a^2+ab^2-2b^2+32=4$

$ab(a+b)-2(a^2+b^2)+32=4$

$ab(a+b)-2(a+b)^2+4ab+32=4$

$(a+b)(ab-2(a+b))+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)-8(a+b)+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)+4(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=\pm 1(\pm 1)\stackrel{\text{or}}=\pm 2(\pm 2)\stackrel{\text{or}}=\pm 4(\pm 1)\stackrel{\text{or}}=\pm 1(\pm 4)$

Upon checking for all cases, we see that the following two are the only solutions:

$(a,\,b)=(-5,\,2),\,(2,\,-5)$
 
anemone said:
Thanks Albert for participating, and your final solution is correct.

My solution:

$a^2(b-2)+b^2(a-2)+28=0$

$a^2(b-2)+b^2(a-2)+32=4$

$a^2b-2a^2+ab^2-2b^2+32=4$

$ab(a+b)-2(a^2+b^2)+32=4$

$ab(a+b)-2(a+b)^2+4ab+32=4$

$(a+b)(ab-2(a+b))+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)-8(a+b)+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)+4(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=1(1)\stackrel{\text{or}}=2(2)\stackrel{\text{or}}=4(1)\stackrel{\text{or}}=1(4)$

Upon checking for all cases, we see that the following two are the only solutions:

$(a,\,b)=(-5,\,2),\,(2,\,-5)$

above ans is correct nut

you missed out some cases of factors (-ve) * (-ve) in which you could have missed out solution but you did not miss out
 
Ah, my mistake...I in fact took into consideration of all cases, just that I forgot to put the plus minus sign in the post...I just fixed it, thanks!
 
anemone said:
Thanks Albert for participating, and your final solution is correct.

My solution:

$a^2(b-2)+b^2(a-2)+28=0$

$a^2(b-2)+b^2(a-2)+32=4$

$a^2b-2a^2+ab^2-2b^2+32=4$

$ab(a+b)-2(a^2+b^2)+32=4$

$ab(a+b)-2(a+b)^2+4ab+32=4$

$(a+b)(ab-2(a+b))+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)-8(a+b)+4(ab+8)=4$

$(a+b)(ab-2(a+b)+8)+4(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=4$

$(a+b+4)(ab-2(a+b)+8)=\pm 1(\pm 1)\stackrel{\text{or}}=\pm 2(\pm 2)\stackrel{\text{or}}=\pm 4(\pm 1)\stackrel{\text{or}}=\pm 1(\pm 4)$

Upon checking for all cases, we see that the following two are the only solutions:

$(a,\,b)=(-5,\,2),\,(2,\,-5)$

Sorry that I missed out last time

$\pm1(\pm 1)$ is invalid
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K