- #1
decerto
- 87
- 2
So I have the lagrangian density ## L = -\frac{1}{2} W^{\mu \nu}_i W_{\mu \nu}^i## where ##W^{\mu \nu}_i = \partial ^\mu W^\nu_i - \partial ^\nu W^\mu_i + \epsilon_i^{jk}W^\mu_j W^\nu_k## and I want to find the equations of motion.
I have gotten to the stage using the EL equations ##\partial_\sigma \left(\frac{\partial L}{\partial(\partial_\sigma W_\lambda ^r)}\right)-\frac{\partial L}{\partial W_\lambda ^r}=0## that
##\partial_\sigma\left(W^{\sigma \lambda}_r-W^{\lambda \sigma}_r\right) - \frac{1}{2}\epsilon^i_{rk}\left(W_\nu^k W^{\lambda \nu}_i+W^{\lambda \nu}_i W_{\nu}^k-W_\nu^k W^{\nu \lambda}_i - W^{\nu \lambda}_iW_{\nu}^k\right)##
So I am pretty sure I need to use commutation relations to get this stuff to cancel but I don't really know what those relations even are, I know W are non abelian and hence don't commute but I don't know what their commutation relations are or anything so any help would be appreciated. I also don't know if the W tensor is anti symmetric or not but I don't know what's the relation when you swap indices.
I have gotten to the stage using the EL equations ##\partial_\sigma \left(\frac{\partial L}{\partial(\partial_\sigma W_\lambda ^r)}\right)-\frac{\partial L}{\partial W_\lambda ^r}=0## that
##\partial_\sigma\left(W^{\sigma \lambda}_r-W^{\lambda \sigma}_r\right) - \frac{1}{2}\epsilon^i_{rk}\left(W_\nu^k W^{\lambda \nu}_i+W^{\lambda \nu}_i W_{\nu}^k-W_\nu^k W^{\nu \lambda}_i - W^{\nu \lambda}_iW_{\nu}^k\right)##
So I am pretty sure I need to use commutation relations to get this stuff to cancel but I don't really know what those relations even are, I know W are non abelian and hence don't commute but I don't know what their commutation relations are or anything so any help would be appreciated. I also don't know if the W tensor is anti symmetric or not but I don't know what's the relation when you swap indices.