MHB Calculating Torques for Equilibrium of Truss System

AI Thread Summary
To solve the equilibrium problem for the truss system, it's essential to identify all external forces acting on the structure, specifically at points A and D. The conditions for equilibrium require that the sum of forces in both the x and y directions, as well as the sum of moments about point A, must equal zero. Calculating the moments of the external forces with respect to point A is a crucial step in determining the magnitudes of forces P and F along bars AB and AE. Additionally, it's noted that in US physics terminology, moments are often referred to as torques. Understanding these concepts is vital for maintaining equilibrium in the truss system.
paulmdrdo
Messages
89
Reaction score
2
I wonder if there's a physics person here who could help me solve this problem.

the loads applied to the truss shown in the figure cause reactions shown at A & D. A free body diagram of hinge A forms concurrent force system shown enclosed at A. Determine the magnitude of forces P & F directed respectively along bars AB & AE that maintain equilibrium of this system.
 

Attachments

  • statics2.png
    statics2.png
    5.8 KB · Views: 106
Mathematics news on Phys.org
LATEBLOOMER said:
I wonder if there's a physics person here who could help me solve this problem.

the loads applied to the truss shown in the figure cause reactions shown at A & D. A free body diagram of hinge A forms concurrent force system shown enclosed at A. Determine the magnitude of forces P & F directed respectively along bars AB & AE that maintain equilibrium of this system.

Hi LATEBLOOMER! :)

First step is to find all external forces based on the conditions for equilibrium ($\sum F_x = 0, \sum F_y = 0, \sum M_A = 0$).

Suppose the external force at A on the truss has 2 components $A_x$ and $A_y$, and similarly at D we have $D_x$ and $D_y$. Can you find these forces?
I suggest you start with calculating the moments of all external forces with respect to A.
 
I like Serena said:
I suggest you start with calculating the moments of all external forces with respect to A.

Just a comment: in US physics, at least, moments are called torques. See here and here.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top