MHB Esteban's question at Yahoo Answers (Field extension)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Extension
AI Thread Summary
The discussion centers on proving that for an extension field E of F, the equality F(a,b) = F(a)(b) = F(b)(a) holds for elements a and b in E. It establishes that if S1 and S2 are subsets of E, then F(S1 ∪ S2) equals F(S1)(S2). The proof utilizes the concept of Moore families and the closure of subfields in E. By applying this to the specific case of S1 being {a} and S2 being {b}, the equality is confirmed. This mathematical relationship is crucial in understanding the structure of field extensions.
Mathematics news on Phys.org
Hello Esteban,

In general, if $S_1,S_2$ are subsets of $E$, let us prove that $F(S_1\cup S_2)=F(S_1)(S_2)$.

We know that the intersection of subfields of $E$ is a subfield of $E$ so, the colection of subfields of $E$ form a Moore family. The corresponding Moore closure $X\to \bar{X}$ associates to every subset of $E$ the smallest subfield $\bar{X}$ of $E$ containing $X$, so $F(S)=\overline{F\cup S}$. Then, $$\begin{aligned}F(S_1\cup S_2)&=\overline{F\cup S_1\cup S_2 }\\&=\overline{\overline{F\cup S_2}\cup S_2}\\&=F(S_1)(S_2)\end{aligned}$$ Now we can particularize $S_1=\{a\}$ and $S_2=\{b\}$ (or reciprocally).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top