MHB Esteban's question at Yahoo Answers (Field extension)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Extension
Click For Summary
The discussion centers on proving that for an extension field E of F, the equality F(a,b) = F(a)(b) = F(b)(a) holds for elements a and b in E. It establishes that if S1 and S2 are subsets of E, then F(S1 ∪ S2) equals F(S1)(S2). The proof utilizes the concept of Moore families and the closure of subfields in E. By applying this to the specific case of S1 being {a} and S2 being {b}, the equality is confirmed. This mathematical relationship is crucial in understanding the structure of field extensions.
Mathematics news on Phys.org
Hello Esteban,

In general, if $S_1,S_2$ are subsets of $E$, let us prove that $F(S_1\cup S_2)=F(S_1)(S_2)$.

We know that the intersection of subfields of $E$ is a subfield of $E$ so, the colection of subfields of $E$ form a Moore family. The corresponding Moore closure $X\to \bar{X}$ associates to every subset of $E$ the smallest subfield $\bar{X}$ of $E$ containing $X$, so $F(S)=\overline{F\cup S}$. Then, $$\begin{aligned}F(S_1\cup S_2)&=\overline{F\cup S_1\cup S_2 }\\&=\overline{\overline{F\cup S_2}\cup S_2}\\&=F(S_1)(S_2)\end{aligned}$$ Now we can particularize $S_1=\{a\}$ and $S_2=\{b\}$ (or reciprocally).
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K