Hi everybody! I have to write a protocole for our last experiment about elasticity and torsion (in physics), and as an extra question I am asked to calculate the Poisson ratio and to calculate the correlated error by estimating the covariance. Unfortunately I have never done that before, and I don't really understand what the covariance is. Here is the formula for the Poisson ratio:(adsbygoogle = window.adsbygoogle || []).push({});

##\mu = \frac{E}{2G} - 1##

I imagine that ##Cov(X,Y)## refers to ##Cov(E,G)## in our case. The problem is that we have only one value for E and for G (determined experimentally), which is probably why we were asked to estimate the covariance. I've seen that ##0 < Cov(X,Y) < 1## when the two values grow together, and that's the result we got:

##G = \frac{E}{2(1 + \mu)} = kE = 0.3708 E## (that's the value we got for the Poisson ratio)

Since ##\mu## is supposed to be a constant, a graph of ##G## in function of ##E## should be linear. Can I then estimate ##Cov(E,G) \approx 1##? Or did I completely misunderstand it?

Thanks a lot in advance for your answers.

Julien.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Estimating the covariance

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**