MHB Eulers phi function, orders, gcd

  • Thread starter Thread starter tda1201
  • Start date Start date
  • Tags Tags
    Function Gcd Phi
Click For Summary
The discussion centers on proving that if a^k ≡ 1 (mod m) and a^l ≡ 1 (mod m), then a^d ≡ 1 (mod m) where d = gcd(k, l). It is clarified that it is not necessary for k to divide φ(m), with a counterexample provided. Participants suggest using the relationship kx + ly = d to approach the proof. Additionally, there is a recommendation to utilize LaTeX for clearer communication of mathematical expressions. The conversation emphasizes understanding the properties of orders and gcd in modular arithmetic.
tda1201
Messages
8
Reaction score
0
Let a, k , l , m e Z>1 and let a^k=1 (mod m) and a^l= 1 (mod m).
Let d=gcd(k,l)
Prove that a^d=1 (mod m).

I get already confused at the start: Is it true that k|phi(m) (Lagrange) but k can also be a multiple of the order of a (mod m) and then it can be the other way round.

Can anybody clarify this and give me a direction to start working? Thanks!
 
Mathematics news on Phys.org
tda120 said:
Let a, k , l , m e Z>1 and let a^k=1 (mod m) and a^l= 1 (mod m).
Let d=gcd(k,l)
Prove that a^d=1 (mod m).

I get already confused at the start: Is it true that k|phi(m) (Lagrange) but k can also be a multiple of the order of a (mod m) and then it can be the other way round.

Can anybody clarify this and give me a direction to start working? Thanks!
Hey tda120.

No. It is not necessary that $k|\phi(m)$. An easy counterexample is by taking $k=2\phi(m)$.

As for the question, use the fact that there exist integers $x$ and $y$ such that $kx+ly=d$.

I'd like to suggest that you check out our LaTeX forum and learn some basic LaTeX so that you will be able to post more readable questions.
 
Thank you, I think this helps me a lot!
You're right; I should start using LaTeX, but I'm still a bit shy at using it...
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K