MHB Evaluate Limit: $\lim_{n\rightarrow \infty } n(\frac{1}{(2n+1)^2} + \cdots)$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Limit
AI Thread Summary
The limit to evaluate is $\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$. The series inside the limit consists of terms that decrease in value as n increases, specifically the squares of odd numbers. The discussion highlights the importance of recognizing the asymptotic behavior of the series as n approaches infinity. Ultimately, the limit converges to a specific value, which is derived through careful analysis of the series and its behavior. The evaluation of this limit is crucial for understanding the convergence of similar series in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Evaluate the limit:

$\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{\left ( 2n+1 \right )^2}+\frac{1}{\left ( 2n+3 \right )^2}+ ...+\frac{1}{\left ( 4n-1 \right )^2} \right ) \right )$

Hint:

Consider the function: $f(x)=\frac{1}{x^2}$ on a suitable interval ...$

Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\frac{1}{(2+\frac{5}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r-1}{n})^2}$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{n} \frac{1}{(2+\frac{2r}{n}-\frac{1}{n})^2}$$

Since $n\rightarrow \infty$, $1/n \rightarrow 0$ and the above limit can be written as the following definite integral:
$$\int_0^1 \frac{dx}{(2+2x)^2}=\frac{1}{4}\left(-\frac{1}{1+x}\right|_0^1=\boxed{\dfrac{1}{8}}$$
 
Last edited:
Pranav said:
Rewrite the expression as:
$$\lim_{n\rightarrow \infty} \frac{1}{n}\left(\frac{1}{(2+\frac{1}{n})^2}+\frac{1}{(2+\frac{2}{n})^2}+\frac{1}{(2+\frac{3}{n})^2}+\cdots +\frac{1}{(2+\frac{2n-1}{n})^2}\right)$$
$$=\lim_{n\rightarrow \infty} \frac{1}{n}\sum_{r=1}^{2n-1} \frac{1}{(2+\frac{r}{n})^2}$$
The above limit can be written as the following definite integral:
$$\int_0^2 \frac{dx}{(2+x)^2}=\left(-\frac{1}{2+x}\right|_0^2=\frac{-1}{4}+\frac{1}{2}=\boxed{\dfrac{1}{4}}$$

Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...
 
Last edited:
lfdahl said:
Good (and fast!) job, Pranav! - but:

You´re missing a factor 2 somewhere ...

Sorry about that, I misread the problem. :o

Do you mean a factor of 1/2?
 
Yes :o
 
Solution by other:

Consider the function $f(x) = \frac{1}{x^2}$ on the interval [2;4].
If we divide this interval into $n$ subintervals of equal length $\frac{2}{n}$ using the points $x_k= 2 + \frac{2k}{n}$, $0 \le k \le n$, and choose our sample points to be the midpoints $c_k= 2 + \frac{2k-1}{n}$,
$1\le k \le n$, of these subintervals, the Riemann sum for these data becomes
\[\sum_{k=1}^{n}f(c_k)\Delta x_k = \sum_{k=1}^{n}f\left ( 2+\frac{2k-1}{n} \right )\frac{2}{n}=\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2}\]
And the definition of definite integral gives
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{2n}{(2n+2k-1)^2} =\int_{2}^{4}\frac{dx}{x^2}= \left [ -\frac{1}{x} \right ]_{2}^{4}=\frac{1}{4}\]
Therefore
\[\lim_{n\rightarrow \infty }\left ( n\left (\frac{1}{(2n+1)^2}+\frac{1}{(2n+3)^2}+ ...+\frac{1}{(4n-1)^2} \right ) \right )=\frac{1}{8}\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top