MHB Evaluating a double integral in polar coordinates

Click For Summary
The discussion focuses on converting a Cartesian double integral representing a circle into polar coordinates for evaluation. The original integral was incorrectly set up with limits that suggested only half the circle was being considered. The correct polar integral should have limits from 0 to 2π for θ and 0 to a for r, leading to the evaluation of the area as πa². Participants clarified the misunderstanding about the bounds and confirmed the correct approach to solving the integral. The problem highlights the importance of recognizing the geometric interpretation of the integral's limits.
skate_nerd
Messages
174
Reaction score
0
I've done this problem and I have a feeling it's incorrect. I've never done a problem like this so I am kind of confused on how else to go about doing it. The goal is to change the cartesian integral
$$\int_{-a}^{a}\int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\,dy\,dx$$
into an integral in polar coordinates and then evaluate it.
Changing to polar coordinates I got the integral
$$\int_{0}^{\pi}\int_{-a}^{a}r\,dr\,d\theta$$
and evaluating this integral I ended up with an integrand of 0 to integrate with respect to \(d\theta\) and I wasn't entirely sure how to integrate that so I thought it might just be \(\pi\).
I really feel like there's no way that answer could be correct, seeing as the integral is of half a circle with radius \(a\) and the answer has nothing to do with \(a\). If someone could let me know where I went wrong that would be great.
 
Physics news on Phys.org
Re: evaluating a double integral in polar coordinates

Since you are integrating over an entire circle of radius |a| centred at (0, 0), that means the angle swept out is actually [math] \displaystyle 2\pi [/math], which means your [math] \displaystyle \theta [/math] bounds are actually 0 to [math]\displaystyle 2\pi [/math].
 
Re: evaluating a double integral in polar coordinates

skatenerd said:
I've done this problem and I have a feeling it's incorrect. I've never done a problem like this so I am kind of confused on how else to go about doing it. The goal is to change the cartesian integral
$$\int_{-a}^{a}\int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\,dy\,dx$$
into an integral in polar coordinates and then evaluate it.
Changing to polar coordinates I got the integral
$$\int_{0}^{\pi}\int_{-a}^{a}r\,dr\,d\theta$$
and evaluating this integral I ended up with an integrand of 0 to integrate with respect to \(d\theta\) and I wasn't entirely sure how to integrate that so I thought it might just be \(\pi\).
I really feel like there's no way that answer could be correct, seeing as the integral is of half a circle with radius \(a\) and the answer has nothing to do with \(a\). If someone could let me know where I went wrong that would be great.

The bounds of the inner integral are 0 and a, not -a and a so that is...

$\displaystyle S= \int_{0}^{2\ \pi} \int_{0}^{a} r\ d r\ d \theta = \pi\ a^{2}$ (1)

Kind regards

$\chi$ $\sigma$
 
Re: evaluating a double integral in polar coordinates

Thanks guys. I didn't recognize initially that the bounds of the original integral are describing the area of a whole circle. Pretty cool problem now that I get it!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
4
Views
4K