MHB Evaluating an Expression with $k^{101}=1$ and $k\ne1$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary
The expression to evaluate is $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$, under the condition that $k^{101}=1$ and $k\ne1$. A participant suggests that the upper limit should be 100 instead of 200, leading to a reevaluation of the series. The final calculation results in a value of 49, derived from the sum of terms and the evaluation of the series involving $\dfrac{1}{k^n-1}$. The discussion highlights the importance of careful notation and the impact of minor errors on the overall solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
 
Mathematics news on Phys.org
anemone said:
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+100+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+100-50=49$
 
Last edited:
Albert said:
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+200+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+200-50=149$

Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$
 
Thanks! yes it is " 100"
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50
 
Last edited:
anemone said:
Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$

we have
$\dfrac{k^2}{k-1}$
= $\dfrac{k^2-1+1}{k-1}$
= $k+1 + \dfrac{1}{k-1}$

which is straight forward

why $k-1 + \dfrac{1}{k-1}+ 2$
 
Albert said:
Thanks! yes it is " 100"

See, I told you so...hehehe...:p but I know that was purely an honest mistake.

Albert said:
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50

Argh! How could I miss out something so "obvious" like that? Shame on me!:mad:
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
710
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
4K