MHB Evaluating an Expression with $k^{101}=1$ and $k\ne1$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
AI Thread Summary
The expression to evaluate is $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$, under the condition that $k^{101}=1$ and $k\ne1$. A participant suggests that the upper limit should be 100 instead of 200, leading to a reevaluation of the series. The final calculation results in a value of 49, derived from the sum of terms and the evaluation of the series involving $\dfrac{1}{k^n-1}$. The discussion highlights the importance of careful notation and the impact of minor errors on the overall solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
 
Mathematics news on Phys.org
anemone said:
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+100+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+100-50=49$
 
Last edited:
Albert said:
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+200+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+200-50=149$

Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$
 
Thanks! yes it is " 100"
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50
 
Last edited:
anemone said:
Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$

we have
$\dfrac{k^2}{k-1}$
= $\dfrac{k^2-1+1}{k-1}$
= $k+1 + \dfrac{1}{k-1}$

which is straight forward

why $k-1 + \dfrac{1}{k-1}+ 2$
 
Albert said:
Thanks! yes it is " 100"

See, I told you so...hehehe...:p but I know that was purely an honest mistake.

Albert said:
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50

Argh! How could I miss out something so "obvious" like that? Shame on me!:mad:
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top