Evaluating an Expression with $k^{101}=1$ and $k\ne1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary
SUMMARY

The expression evaluated is $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$ under the condition that $k^{101}=1$ and $k\ne1$. The correct interpretation of the series leads to a total of 49 after correcting a typographical error where 200 should be 100. The breakdown of the series includes terms that sum to 100 and a secondary series that contributes -50, resulting in the final evaluation of 49.

PREREQUISITES
  • Understanding of complex numbers and roots of unity.
  • Familiarity with algebraic manipulation of fractions.
  • Knowledge of series summation techniques.
  • Experience with polynomial identities and their applications.
NEXT STEPS
  • Study the properties of roots of unity in complex analysis.
  • Learn about geometric series and their summation formulas.
  • Explore advanced algebraic techniques for simplifying rational expressions.
  • Investigate the implications of polynomial identities in mathematical proofs.
USEFUL FOR

Mathematicians, students studying algebra and complex analysis, and anyone interested in evaluating series involving roots of unity.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
 
Mathematics news on Phys.org
anemone said:
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+100+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+100-50=49$
 
Last edited:
Albert said:
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+200+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+200-50=149$

Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$
 
Thanks! yes it is " 100"
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50
 
Last edited:
anemone said:
Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$

we have
$\dfrac{k^2}{k-1}$
= $\dfrac{k^2-1+1}{k-1}$
= $k+1 + \dfrac{1}{k-1}$

which is straight forward

why $k-1 + \dfrac{1}{k-1}+ 2$
 
Albert said:
Thanks! yes it is " 100"

See, I told you so...hehehe...:p but I know that was purely an honest mistake.

Albert said:
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50

Argh! How could I miss out something so "obvious" like that? Shame on me!:mad:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
908
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K