MHB Evaluating an Expression with $k^{101}=1$ and $k\ne1$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
AI Thread Summary
The expression to evaluate is $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$, under the condition that $k^{101}=1$ and $k\ne1$. A participant suggests that the upper limit should be 100 instead of 200, leading to a reevaluation of the series. The final calculation results in a value of 49, derived from the sum of terms and the evaluation of the series involving $\dfrac{1}{k^n-1}$. The discussion highlights the importance of careful notation and the impact of minor errors on the overall solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
 
Mathematics news on Phys.org
anemone said:
If $k^{101}=1$ and $k\ne1$, evaluate $\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$.
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+100+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+100-50=49$
 
Last edited:
Albert said:
$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+200+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+200-50=149$

Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$
 
Thanks! yes it is " 100"
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50
 
Last edited:
anemone said:
Thanks for participating, Albert!

But I think there is a typo, where I think the 200 is actually a 100:

$\dfrac{k^2}{k-1}+\dfrac{k^4}{k^2-1}+\dfrac{k^6}{k^3-1}+\cdots+\dfrac{k^{200}}{k^{100}-1}$
$=(k-1)+\dfrac{1}{k-1}+2+(k^2-1)+\dfrac{1}{k^2-1}+2+--+(k^{100}-1)+\dfrac{1}{k^{100}-1}+2$
$=(k+k^2+k^3+---+k^{100})+{\color{red}{100}}+(\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1})$
$=-1+{\color{red}{100}}-50=49$

Just to further elaborate, based on my solution, about how the expression $\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}$ yields a $-50$:

$\begin{align*}\dfrac{1}{k-1}+\dfrac{1}{k^2-1}+---+\dfrac{1}{k^{100}-1}&=\left(\dfrac{1}{k-1}+\dfrac{1}{k^{100}-1}\right)+\left(\dfrac{1}{k^2-1}+\dfrac{1}{k^{99}-1}\right)+\cdots+\left(\dfrac{1}{k^{50}-1}+\dfrac{1}{k^{51}-1}\right)\\&=\left(\dfrac{(k^{100}-1)+(k-1)}{(k-1)(k^{100}-1)}\right)+\left(\dfrac{(k^{99}-1)+(k^2-1)}{(k^2-1)(k^{99}-1)}\right)+\cdots+\left(\dfrac{(k^{51}-1)+(k^{50}-1)}{(k^{50}-1)(k^{51}-1)}\right)\\&=\left(\dfrac{k^{100}+k-2}{k^{101}-k-k^{100}-1}\right)+\left(\dfrac{k^{99}+k^2-2}{k^{101}-k^2-k^{99}+1}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{k^{101}-k^{50}-k^{51}+1}\right)\\&=\left(\dfrac{k^{100}+k-2}{-(k^{100}+k-2)}\right)+\left(\dfrac{k^{99}+k^2-2}{-(k^{99}+k^2-2)}\right)+\cdots+\left(\dfrac{k^{51}+k^{50}-2}{-(k^{51}+k^{50}-2)}\right)\\&=-50\end{align*}$

we have
$\dfrac{k^2}{k-1}$
= $\dfrac{k^2-1+1}{k-1}$
= $k+1 + \dfrac{1}{k-1}$

which is straight forward

why $k-1 + \dfrac{1}{k-1}+ 2$
 
Albert said:
Thanks! yes it is " 100"

See, I told you so...hehehe...:p but I know that was purely an honest mistake.

Albert said:
$\dfrac{1}{k-1}+\dfrac {1}{k^{100}-1}$
$=\dfrac{1}{k-1}+\dfrac{k}{1-k}=\dfrac{k-1}{1-k}=-1$
for $k^{100}=\dfrac {1}{k},\,\,\, \, k^{99}=\dfrac {1}{k^2},------$
we have 50 paires ,it sums up to -50

Argh! How could I miss out something so "obvious" like that? Shame on me!:mad:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top