MHB Evaluating the Limit of an Infinite Product

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \lim_{{n}\to{\infty}} \prod_{k=3}^{n}\left(1-\tan^4\dfrac{\pi}{2^k}\right)$.
 
Mathematics news on Phys.org
Hint:

Think along the line of telescoping product...:)
 
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$
 
Last edited:
jacobi said:
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$

Hi jacobi,

Thanks for participating and also your so neat and great solution! :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
Replies
4
Views
1K
Back
Top