Evaluating the Limit of an Infinite Product

Click For Summary

Discussion Overview

The discussion revolves around evaluating the limit of an infinite product, specifically the expression $\displaystyle \lim_{{n}\to{\infty}} \prod_{k=3}^{n}\left(1-\tan^4\dfrac{\pi}{2^k}\right)$. Participants are exploring various approaches and solutions related to this mathematical limit.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the limit of the infinite product as the main problem to solve.
  • Another participant offers a hint, although the content of the hint is not specified.
  • Multiple participants share their solutions, indicating different methods or steps taken to approach the limit.
  • A participant expresses appreciation for another's solution, suggesting a collaborative atmosphere.

Areas of Agreement / Disagreement

The discussion appears to involve multiple proposed solutions and hints, but it is unclear whether there is consensus on any particular approach or result.

Contextual Notes

Details regarding the assumptions or specific mathematical steps taken in the solutions are not provided, leaving some aspects of the discussion unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \lim_{{n}\to{\infty}} \prod_{k=3}^{n}\left(1-\tan^4\dfrac{\pi}{2^k}\right)$.
 
Physics news on Phys.org
Hint:

Think along the line of telescoping product...:)
 
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$
 
Last edited:
jacobi said:
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$

Hi jacobi,

Thanks for participating and also your so neat and great solution! :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
984
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K