Evaluating the quark neutrino mixing matrix

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the quark and neutrino mixing matrices, specifically the CKM and PMNS matrices. Participants explore the mathematical representation of these matrices, the implications of complex trigonometric terms, and the source of the numerical values used in their calculations.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents the CKM and PMNS matrices, including their complex trigonometric components and fitted numerical values.
  • Another participant questions the source of the numerical values, suggesting they may be derived from the particle data booklet.
  • A participant expresses confusion regarding the variable nature of the term ##e^{-i\sigma_{13}}##, noting that it appears to change for different matrix element calculations despite ##\sigma_{13}## being a fixed angle.
  • Another participant introduces the concept of neutrino flavor oscillations, providing a formula for the probability of switching between flavors as a function of distance.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of the complex terms in the matrices or the consistency of the values used. There is ongoing uncertainty regarding the definition and application of ##e^{-i\sigma_{13}}## in calculations.

Contextual Notes

Participants note that the meaning of ##e^{-i\sigma_{13}}## is not clearly defined in the referenced papers, leading to confusion in its application across different matrix elements.

James1238765
Messages
120
Reaction score
8
TL;DR
How to resolve the complex trigonometric exponential ##\exp{i\sigma{cp}}## in the CKM and PMNS matrix parameters?
The mixing of the 3 generations of fermions are tabulated into the CKM matrix for quarks:

$$ \begin{bmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\sigma_{13}} \\
-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\sigma_{12}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\sigma_{13}} & s_{23}c_{13} \\
s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\sigma_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\sigma_{13}} & c_{23}c_{13}
\end{bmatrix} $$

where c12 is shorthand for the ##cos(\sigma_{12})## function, and s is shorthand for the ##sin(\sigma_{12})## function, and with experimentally fitted values as follows:

$$ \begin{bmatrix}
0.97370 & 0.2245 & 0.00382 \\
0.221 & 0.987 & 0.041 \\
0.008 & 0.0388 & 1.013
\end{bmatrix} $$

Similarly the PMNS matrix tabulates the mixing statistics for neutrinos:

$$ \begin{bmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\sigma_{cp}} \\
-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\sigma_{cp}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\sigma_{cp}} & s_{23}c_{13} \\
s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\sigma_{cp}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\sigma_{cp}} & c_{23}c_{13}
\end{bmatrix} $$

with experimentally fitted values as follows:

$$ \begin{bmatrix}
0.801 & 0.513 & 0.143 \\
0.232 & 0.459 & 0.629 \\
0.260 & 0.470 & 0.609
\end{bmatrix} $$

Could anyone explain how the complex trigonometric ##e^{i\sigma_{13}}## and ##e^{i\sigma_{cp}}## having the form

$$e^{i\sigma_{13}} = \cos \sigma_{13} + i \sin \sigma_{13} $$

can morph into real values in the final numerical matrices, please?
 
Last edited:
Physics news on Phys.org
@vanhees71 thank you. Very oddly the ##e^{-i\sigma_{13}}## has no constant fixed value throughout.

##\sigma_{13}## is a fixed numerical angle at 68.8 degrees, but even if we set ##e^{-i\sigma_{13}}## to a particular value to correctly match a particular matrix element, the other matrix elements having ##e^{-i\sigma_{13}}## term will still output wrong answers.

So ##e^{-i\sigma_{13}}## changes for every matrix element calculation. It seems never defined what ##e^{-i\sigma_{13}}## means in the above paper, and other papers like [this] , so I guess I will just leave it there for now.
 
Neutrino flavor oscillations are clock-like precise as a function of distance. For two-neutrinos oscillation:

$$Prob_{switch} = \sin^2{(2\theta})\sin^2{(\frac{\triangle m^2L}{4E})}$$

which is sinusoidal with respect to distance traveled L.

320px-Oscillations_muon_short.svg.png

(source: wiki)
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K