Exact Solution of Geometric Brownian Motion

Tilde90
Messages
20
Reaction score
0
Hi!
Probably I am just confused, but why for the exact solution of the geometric brownian motion dX_t = \mu X_t dt+\sigma X_t dW_t we have to apply Ito's lemma and manipulate the expression obtained with dlogX_t? Couldn't we directly use the espression dX_t / X_t = dlogX_t in the equation dX_t / X_t = \mu dt+\sigma dW_t?
Thank you for your help!
 
Last edited:
Physics news on Phys.org
Tilde90 said:
Hi!
Probably I am just confused, but why for the exact solution of the geometric brownian motion dX_t = \mu X_t dt+\sigma X_t dW_t we have to apply Ito's lemma and manipulate the expression obtained with dlogX_t? Couldn't we directly use the espression dX_t / X_t = dlogX_t in the equation dX_t / X_t = \mu dt+\sigma dW_t?
Thank you for your help!

Hey Tilde90 and welcome to the forums.

You could do this, but it's easier to have in the 1st format since you can integrate both sides which on the LHS gives you Xt - X0 and on the RHS gives you two integral expressions which you can solve using the Ito Lemma.

You also need to remember that in one integral you have a Brownian motion measure and because of this, you need to be careful in how you calculate the integral since it is very different to how you treat normal integrals like say f(x)dx across the real line.
 
Thank you very much chiro.

I mistakenly believed that the "stochastic" integral were easier to calculate, as in the demonstration of the exact solution of the GBM with Ito's lemma it seems that they just integrate both terms of the SDE dlogX_t=(\mu-\frac{\sigma^2}{2})dt+\sigma dW_t.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top