I was playing trying to work through a proof in Apostol's Calculus and can't quite understand a step noted. This is from chapter 3, theorem 1.35. Every nonnegative real number has a unique nonnegative square root. The part where you are establishing the set S as nonempty so you can use LUB it is stated that a/(1+a) is in the set S. I've seen different choices for this on other versions of this proof. When I first looked at this I figured it was in S for the reason that that would produce a square of a fraction which would produce something smaller than a. But it looks like this is then used with the binomial theorem to finish off the proof. I don't follow it. Can someone walk me through the logic in this one?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Existence of the Square Root Proof

**Physics Forums | Science Articles, Homework Help, Discussion**