Expanding a function in terms of a vector

Click For Summary
SUMMARY

The discussion focuses on expanding the function L(v^2 + 2 \pmb{v} \cdot \pmb{\epsilon} + \pmb{\epsilon}^2) in terms of the infinitesimal vector \pmb{\epsilon}. Participants confirm that the Taylor expansion is applicable, specifically up to the first derivative, leading to the approximation L(v^2) + \frac{\partial L}{\partial v^2} \cdot 2 \pmb{v} \cdot \pmb{\epsilon}. The use of the partial derivative \frac{\partial L}{\partial v^2} is debated, with clarification that L is defined over a subset of \mathbb{R}, not \mathbb{R}^n, suggesting notation adjustments may be necessary.

PREREQUISITES
  • Understanding of Taylor series expansion
  • Familiarity with vector calculus
  • Knowledge of partial derivatives
  • Basic concepts of infinitesimals in mathematical analysis
NEXT STEPS
  • Study Taylor series expansion in multiple variables
  • Explore the application of the chain rule in vector calculus
  • Review the concept of infinitesimals in calculus
  • Investigate the implications of using partial derivatives in scalar versus vector functions
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector functions and require a solid understanding of Taylor expansions and infinitesimal calculus.

tissuejkl
Messages
8
Reaction score
0

Homework Statement


## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2)##, where ## \pmb{\epsilon}## is infinitesimal and ##\pmb{v}## is a constant vector (## v^2 ## here means ## \pmb{v} \cdot \pmb{v} ## ), must be expanded in terms of powers of ## \pmb{\epsilon} ## to give $$ L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} $$
where terms above the first order have been neglected.

Homework Equations

The Attempt at a Solution


I thought about using the Taylor expansion to expand L in terms of ## \pmb{\epsilon} ##, but that seems to work only if ##\epsilon ## were a scalar, so I'm not quite sure what to use to expand L.
 
Physics news on Phys.org
tissuejkl said:

Homework Statement


## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2)##, where ## \pmb{\epsilon}## is infinitesimal and ##\pmb{v}## is a constant vector (## v^2 ## here means ## \pmb{v} \cdot \pmb{v} ## ), must be expanded in terms of powers of ## \pmb{\epsilon} ## to give $$ L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} $$
where terms above the first order have been neglected.

Homework Equations

The Attempt at a Solution


I thought about using the Taylor expansion to expand L in terms of ## \pmb{\epsilon} ##, but that seems to work only if ##\epsilon ## were a scalar, so I'm not quite sure what to use to expand L.
What is your question? Are you trying to show that ## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2) \approx L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} ##?
 
Mark44 said:
What is your question? Are you trying to show that ## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2) \approx L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} ##?
Yes. Sorry, I should have made that clearer.
 
It looks to me like they're doing something like this:
##f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x##
IOW, it's the Taylor expansion with terms only up to the first derivative.
 
Mark44 said:
It looks to me like they're doing something like this:
##f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x##
IOW, it's the Taylor expansion with terms only up to the first derivative.
Is there a reason why the derivative in the second term should be the partial derivative ## \frac{\partial L}{\partial v^2} ##, then?
 
tissuejkl said:
Is there a reason why the derivative in the second term should be the partial derivative ## \frac{\partial L}{\partial v^2} ##, then?
The domain of L is a subset of ##\mathbb R##, not a subset of ##\mathbb R^n## with n>1, so L doesn't have partial derivatives. Maybe that's just a terrible notation for ##L'(\pmb v^2)##.

I would start like this and then just use the chain rule:
$$L(\mathbf v^2+2\pmb v\cdot\pmb\varepsilon+\pmb\varepsilon^2) = L(\pmb v^2)+\varepsilon_i\frac{\partial}{\partial \varepsilon_i}\bigg|_{\pmb 0} L(\pmb v^2+2\pmb v\cdot\pmb\varepsilon+\pmb\varepsilon^2).$$
 
Last edited:

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K