MHB Expanding f(x) in a Fourier Series to Prove $\frac{\pi^2}{8}$

Suvadip
Messages
68
Reaction score
0
If $$f(x)=x+1$$, expand $$f(x)$$ in Fourier series and hence show that

$$\sum_{n=0}^\infty \frac{1}{(2n-1)^2}=\frac{\pi^2}{8}$$This question was set in an exam. I am in a position to try it if there is some interval say $$[-\pi \quad \pi]$$ or like that.

But there is no interval in the question. Please give me some suggestion how to proceed.
 
Mathematics news on Phys.org
suvadip said:
If $$f(x)=x+1$$, expand $$f(x)$$ in Fourier series and hence show that

$$\sum_{n=0}^\infty \frac{1}{(2n-1)^2}=\frac{\pi^2}{8}$$This question was set in an exam. I am in a position to try it if there is some interval say $$[-\pi \quad \pi]$$ or like that.

But there is no interval in the question. Please give me some suggestion how to proceed.

The problem is, in my opinion, badly defined. A possible improvement consists in the Fourier series expansion of the function... $\displaystyle f(x)= \begin{cases} \pi - x &\text{if}\ 0 < x < \pi\\ \pi + x &\text{if}\ - \pi < x < 0\end{cases}$ (1)

In that case, writing...

$\displaystyle f(x)= \frac{a_{0}}{2} + \sum_{n=1}^{\infty} (a_{n}\ \cos n x + b_{n}\ \sin n x)$ (2)

... we can compute the coeffcients $a_{n}$ [the $b_{n}$ are zero because the function is even...] as follows...

$\displaystyle a_{0} = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x)\ dx = \pi$ (3)$\displaystyle a_{n} = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x)\ \cos n x\ dx = \frac{2}{\pi}\ \frac{\cos n\ \pi -1}{n^{2}}$ (4)

... so that is...

$\displaystyle f(x) = \frac{\pi}{2} + \frac{4}{\pi}\ (\cos x + \frac {\cos 3x}{9} + \frac{\cos 5 x}{25} + ...)$ (5)

Now setting in (5) $x=0 \implies f(x)= \pi$ we obtain with simple steps... $\displaystyle 1 + \frac {1}{9} + \frac{1} {25} + ... = \frac{\pi^{2}}{8}$ (6) Kind regards $\chi$ $\sigma$
 
suvadip said:
If $$f(x)=x+1$$, expand $$f(x)$$ in Fourier series and hence show that

$$\sum_{n=0}^\infty \frac{1}{(2n-1)^2}=\frac{\pi^2}{8}$$This question was set in an exam. I am in a position to try it if there is some interval say $$[-\pi \quad \pi]$$ or like that.

But there is no interval in the question. Please give me some suggestion how to proceed.

Hi suvadip! :)

The idea of the Fourier series is that you limit your domain to [$-\pi,\pi$], and then extend it again while repeating it.
This is a saw tooth wave.

Anyway, for the calculation of the Fourier series you only look at [$-\pi,\pi$].
The resulting series will be equal to the sawtooth wave.However, with f(x)=x+1, you won't get the result that is required.
What you do get is:
$$f(x)=1+\sum \frac {-2 \cdot (-1)^n}{n} \sin nx$$
$$x + 1 = 1 + 2(\sin x - \frac 1 2 \sin 2x + \frac 1 3 \sin 3x - ...)$$
Filling in $x=\frac \pi 2$ leads to another result:
$$1 - \frac 1 3 + \frac 1 5 - ... = \frac \pi 4$$I suspect that the intended function is $f(x)=|x|+1$, which is similar to the function $\chi$ $\sigma$ suggested and yields the same result.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top