Expectation value of an operator to the power of n

patric44
Messages
308
Reaction score
40
Homework Statement
prove that : <A^n>=<A>^n
Relevant Equations
<A^n>=<A>^n
hi all
how do I prove that
$$
<A^{n}>=<A>^{n}
$$
It seems intuitive but how do I rigorously prove it, My attempt was like , the LHS can be written as:
$$
\bra{\Psi}\hat{A}.\hat{A}.\hat{A}...\ket{\Psi}=\lambda^{n} \bra{\Psi}\ket{\Psi}=\lambda^{n}\delta_{ii}=\lambda^{n}
$$
and the RHS equal:
$$
<A>^{n}=[\bra{\Psi}A\ket{\Psi}]^{n}=\lambda^{n}[\bra{\Psi}\ket{\Psi}]^{n}=\lambda^{n}[\delta_{ii}]^{n}=\lambda^{n}
$$
Is my proof rigurus enough or there are other formal proof for that
 
Physics news on Phys.org
A counter example. For ground state of a partricle in a box [-a,a],
<x>=0 but &lt;x^2&gt; \ \ &gt;\ \ &lt;x&gt;^2=0

Your proof seems to be all right only when ##\Psi## is an eigenstate of A with eigenvalue ##\lambda##.
 
Last edited:
  • Like
Likes malawi_glenn
patric44 said:
Homework Statement: prove that : <A^n>=<A>^n
Note that for ##n = 2##, the variance is not necessarily zero:
$$\sigma^2(A) =\langle A^2 \rangle - \langle A \rangle^2 \ne 0$$In general, you can derive an expression for ##\langle A^n \rangle - \langle A \rangle^n## by starting with:
$$\langle[A - \langle A \rangle]^n \rangle$$And expanding using the Binomial Theorem.
 
  • Like
Likes PhDeezNutz and malawi_glenn
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top