Expectation value of an operator to the power of n

patric44
Messages
308
Reaction score
40
Homework Statement
prove that : <A^n>=<A>^n
Relevant Equations
<A^n>=<A>^n
hi all
how do I prove that
$$
<A^{n}>=<A>^{n}
$$
It seems intuitive but how do I rigorously prove it, My attempt was like , the LHS can be written as:
$$
\bra{\Psi}\hat{A}.\hat{A}.\hat{A}...\ket{\Psi}=\lambda^{n} \bra{\Psi}\ket{\Psi}=\lambda^{n}\delta_{ii}=\lambda^{n}
$$
and the RHS equal:
$$
<A>^{n}=[\bra{\Psi}A\ket{\Psi}]^{n}=\lambda^{n}[\bra{\Psi}\ket{\Psi}]^{n}=\lambda^{n}[\delta_{ii}]^{n}=\lambda^{n}
$$
Is my proof rigurus enough or there are other formal proof for that
 
Physics news on Phys.org
A counter example. For ground state of a partricle in a box [-a,a],
<x>=0 but &lt;x^2&gt; \ \ &gt;\ \ &lt;x&gt;^2=0

Your proof seems to be all right only when ##\Psi## is an eigenstate of A with eigenvalue ##\lambda##.
 
Last edited:
  • Like
Likes malawi_glenn
patric44 said:
Homework Statement: prove that : <A^n>=<A>^n
Note that for ##n = 2##, the variance is not necessarily zero:
$$\sigma^2(A) =\langle A^2 \rangle - \langle A \rangle^2 \ne 0$$In general, you can derive an expression for ##\langle A^n \rangle - \langle A \rangle^n## by starting with:
$$\langle[A - \langle A \rangle]^n \rangle$$And expanding using the Binomial Theorem.
 
  • Like
Likes PhDeezNutz and malawi_glenn
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top