lequan
- 6
- 0
\begin{eqnarray*}
&&\mathbb{E}\left( 1_{\left\{ X_{1}+X_{2}>\rho \right\} }X_{1}X_{2}\right)
\\
&&\mathbb{E}\left( 1_{\left\{ X_{1}+X_{2}>\rho \right\} }X_{1}^{2}\right)
\end{eqnarray*}
where ##X_1## and ##X_2## are independent normal variables. I am wondering whether there exist closed-form expressions for the above two expectations.
&&\mathbb{E}\left( 1_{\left\{ X_{1}+X_{2}>\rho \right\} }X_{1}X_{2}\right)
\\
&&\mathbb{E}\left( 1_{\left\{ X_{1}+X_{2}>\rho \right\} }X_{1}^{2}\right)
\end{eqnarray*}
where ##X_1## and ##X_2## are independent normal variables. I am wondering whether there exist closed-form expressions for the above two expectations.