I get the impression that the words mean something different for philosophers than they do for mathematicians. It's also likely that the meaning changes within those groups depending on the context.
It is my experience that, among mathematicians, an assumption is any statement that is presently accepted, without demonstration, as being true, usually for the express purpose of demonstrating the truth of another statement. Its usage is fairly informal in that most mathematicians (I'm guessing) probably wouldn't be able to give a precise mathematical definition of what they mean, nor would they intend for it to mean anything particularly precise.
For most (I'm guessing) mathematicians, an axiom is kind of like a formal assumption, sometimes even acting as (part of) a definition of terminology. Logicians have a slightly different, more formal take on what an axiom is compared with your "average" working mathematician. But both would consider an axiom to essentially be a "baseline" assumption which, for present purposes, is accepted as unproved and unprovable (well ... the logicians would technically consider an axiom to be trivially proven/provable, but that's neither here nor there).
I have not heard "first principles" thrown around very often among my mathematician friends. I have used it occasionally informally to mean anything "immediately" derivable from the definitions of the terms being used (along with any "sub-definitions"). For example, if you asked me to prove that ##\lim_{x\rightarrow 0}\frac{\sin x}{x}=1## "from first principles", I would ask you what definition of ##\sin## you wanted me to use and would proceed, assuming (there's that word

) basic limit laws (since most are immediately derivable from the definition of the limit), with some sort of ##\epsilon-\delta## proof of the limit. I would not using anything involving the derivative of ##\sin## (such as l'Hopital's Rule) or any other kind of "advanced tech". It's reasonable, though that someone else might interpret the "first principles" request to indicate an even more basic proof than the one I would give. The problem with using that term in a mathematical setting is that the rabbit hole goes VERY deep. True first principles are essentially too much, and then the question turns into which first principles do you mean. Any mathematical question which has a "fair" first-principals answer would basically amount to definition chasing, in my opinion.