IniquiTrance
- 185
- 0
The wikipedia article on \sgn (x) (http://en.wikipedia.org/wiki/Sign_function) states that,
<br /> \frac{d}{dx}\vert x\vert = \sgn(x)<br />
and \frac{d}{dx}\sgn(x) = 2\delta(x). I'm wondering why the following is not true:
<br /> \begin{align*}<br /> \vert x\vert &= x\sgn(x)\\<br /> \Longrightarrow \frac{d}{dx}\vert x \vert &= \sgn(x) + 2x\delta(x) <br /> \end{align*}<br />
by the product rule for derivatives. Is it because this derivative is indeterminate at x=0, and 2x\delta(x) \equiv 0 for all x \neq 0?
<br /> \frac{d}{dx}\vert x\vert = \sgn(x)<br />
and \frac{d}{dx}\sgn(x) = 2\delta(x). I'm wondering why the following is not true:
<br /> \begin{align*}<br /> \vert x\vert &= x\sgn(x)\\<br /> \Longrightarrow \frac{d}{dx}\vert x \vert &= \sgn(x) + 2x\delta(x) <br /> \end{align*}<br />
by the product rule for derivatives. Is it because this derivative is indeterminate at x=0, and 2x\delta(x) \equiv 0 for all x \neq 0?