What is the geometrical connection between escape velocity and orbital velocity?

AI Thread Summary
The discussion focuses on the mathematical relationship between escape velocity and orbital velocity, highlighting that escape velocity is exactly √2 times the orbital velocity. The derivation shows that to escape Earth's gravity, the total energy must be zero, requiring double the kinetic energy of an orbiting body. This doubling leads to the necessity of multiplying the orbital velocity by √2. The connection is not merely coincidental; it stems from the underlying physics of gravitational forces and energy conservation principles. The relationship is confirmed through algebraic derivations involving gravitational constants and the dynamics of circular motion.
IsakVern
Messages
8
Reaction score
0
If you derive the equation for orbital velocity you get

\begin{equation}
v_{orbit} = \sqrt{\frac{GM}{R}}
\end{equation}
and for escape velocity you get
\begin{equation}
v_{escape} = \sqrt{\frac{2GM}{R}}=\sqrt{2}\,v_{orbit}
\end{equation}

I'm wondering if there is a logical/geometrical explanation for why the escape velocity is exactly square root 2 times the orbital velocity, or if this is just an algebraic coincidence?
 
Physics news on Phys.org
To escape to infinity the total energy of the body must at least be ##0##, i.e.,
$$\frac{m}{2} v^2-\frac{G M m}{R} \geq 0,$$
where ##R## is the radius of the Earth, ##M## its mass, and ##G## Newton's gravitational constant; ##v## is the initial velocity which gets
$$v \geq v_{\text{escape}}=\sqrt{\frac{2 G M}{R}}=\sqrt{2gR},$$
where ##g=M G/R^2## is the gravitational acceleration at the surface of the earth.

What you call ##v_{\text{orbit}}## is the velocity of a body in a circular orbit at radius ##\tilde{R}## (I call it ##\tilde{R}## to distinguish it from the radius of the Earth). Then setting the centripetal force equal to the gravitational force indeed gives
$$\frac{m v_{\text{orb}}^2}{\tilde{R}}=\frac{G M}{\tilde{R}^2} \; \Rightarrow\; v_{\text{orb}}=\sqrt{\frac{G M}{\tilde{R}}}.$$
 
  • Like
Likes Ibix
It's an algebraic necessity, not coincidence, if you want to know the speed required so that an object leaves the Earth's surface and reaches infinity with zero kinetic energy. The total energy for an orbiting satellite is ##E =KE+PE=-\frac{1}{2}PE##. To have escape velocity from the surface you need the total energy to be zero. That means doubling the kinetic energy of the bound orbit. To do that you must double ##v^2## which means multiplying ##v## by ##\sqrt{2}##.
 
  • Like
Likes vanhees71 and Ibix
Just to expand slightly on @vanhees71's maths, remember that both cases involve the same basic values - ##G##, ##M##, ##R## and ##m##, and you are combining them to make a velocity. Dimensional analysis tells you immediately that the results have to be the same to within a numerical factor.
 
  • Like
Likes vanhees71 and PeroK
IsakVern said:
I'm wondering if there is a logical/geometrical explanation for why the escape velocity is exactly square root 2 times the orbital velocity, or if this is just an algebraic coincidence?
The algebraic "coincidence" is that when you set the centripetal force equal to the central force, you get something of the form:
$$\frac{v^2}{r} = \frac{k}{r^2}$$
The ##r## cancels on the denominator, which is similar to integrating the force to get the potential. You'll get a factor of ##n -1## for any force of the form ##1/r^n##. In this case ##n = 2##, so the factor is ##1##.

Then, for the escape velocity you are setting ##\frac 1 2 v^2## equal to the potential which is where the factor of ##\sqrt 2## comes in.
 
  • Like
Likes Ibix
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top