jostpuur
- 2,112
- 19
For functions
f:\mathbb{R}^n\to\mathbb{R}
we have derivatives
<br /> \frac{\partial}{\partial x_k} f,<br />
and for functionals
<br /> F:\mathcal{H}\to\mathbb{R},\quad\quad\quad \mathcal{H}\subset \mathbb{R}^{\mathbb{R}^n}<br />
we have functional derivatives
<br /> \frac{\delta}{\delta f(x)} F.<br />
But if we have a linear form defined on a space of functionals,
<br /> \mathcal{F}:\mathcal{Z}\to\mathbb{R},\quad\quad\quad \mathcal{Z}\subset \mathbb{R}^{\mathcal{H}},<br />
then what's the name for this
<br /> \frac{\mathcal{D}}{\mathcal{D} F(f)} \mathcal{F}?<br />
Did I manage giving it a logical notation at least?
In any case, I have no idea what it should be called.
f:\mathbb{R}^n\to\mathbb{R}
we have derivatives
<br /> \frac{\partial}{\partial x_k} f,<br />
and for functionals
<br /> F:\mathcal{H}\to\mathbb{R},\quad\quad\quad \mathcal{H}\subset \mathbb{R}^{\mathbb{R}^n}<br />
we have functional derivatives
<br /> \frac{\delta}{\delta f(x)} F.<br />
But if we have a linear form defined on a space of functionals,
<br /> \mathcal{F}:\mathcal{Z}\to\mathbb{R},\quad\quad\quad \mathcal{Z}\subset \mathbb{R}^{\mathcal{H}},<br />
then what's the name for this
<br /> \frac{\mathcal{D}}{\mathcal{D} F(f)} \mathcal{F}?<br />
Did I manage giving it a logical notation at least?
