Hello everyone, I'm not sure if these questions are really trivial or of they're a little subtle... but here goes.(adsbygoogle = window.adsbygoogle || []).push({});

1. In Ramond's text (Field Theory: A Modern Primer), he explains that the Lagrangian for fermions should have the derivative operator antisymmetrized in order for the kinetic term to be real: [itex]\psi^\dag \sigma^\mu \overleftrightarrow\partial_\mu \psi[/itex] .This is equation (1.7.3), with a discussion above equation (1.4.40). I don't quite understand why the antisymmetrization should do this since the derivative really only acts on a factor of [itex]e^{ip\cdot x}[/itex] in the Fourier transform of the spinors?

[I understand that at the end of the day one can always integrate by parts to get the "only-right-acting" derivative... but this becomes more subtle in cases where one dimension is compact or when the space has curvature since then integration by parts picks up surface terms and/or derivatives of [itex]\sqrt{g}[/itex]]

2. This, I'm almost sure, is a stupid question: I'm confused about the factors of i in Ramond's fermion Lagrangian. He seems to use the same conventions as particle physicists, e.g. (+---) metric and chiral basis of gamma matrices, but his kinetic term appears to be missing a factor of i and the mass term appears to have gained a factor of i. Doesn't this mean that the Lagrangian is no longer real? Where is this factor of i coming from?

Thanks,

Joe

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Factor of 'i' and antisymmetrization in Dirac Lagrangian

**Physics Forums | Science Articles, Homework Help, Discussion**