Factor the repunit ## R_{6}=111111 ## into a product of primes

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Primes Product
Click For Summary

Homework Help Overview

The discussion revolves around factoring the repunit ## R_{6}=111111 ## into a product of primes. Participants explore divisibility rules and properties of repunits in the context of number theory.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the representation of the repunit and its divisibility by certain primes, including 3, 7, 11, and 13. Some mention the sum of digits as a method for checking divisibility. Others explore different factorization methods and the relationships between the factors.

Discussion Status

Several participants have provided insights into the factorization of the repunit, with some suggesting alternative methods and confirming the divisibility by specific primes. There is an ongoing exploration of different approaches to arrive at the prime factorization.

Contextual Notes

Participants reference established divisibility rules and properties of numbers, indicating a shared understanding of the mathematical principles involved. There is no explicit consensus on a single method, but various interpretations and approaches are being discussed.

Math100
Messages
823
Reaction score
234
Homework Statement
Factor the repunit ## R_{6}=111111 ## into a product of primes.
Relevant Equations
None.
Consider the repunit ## R_{6}=111111 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Factor the repunit ## R_{6}=111111 ## into a product of primes.
Relevant Equations:: None.

Consider the repunit ## R_{6}=111111 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Correct.

Or ##111111=111\cdot 1001=(3\cdot 37)\cdot (7\cdot 11 \cdot 13)## also from former results.
 
  • Like
Likes   Reactions: Math100
The test with the 3-digit nonalternating sum works for ##111##, according to a Wikipedia page about divisibility rules.
 
  • Like
Likes   Reactions: Math100
That's a very clever solution, mine is much simpler:
  • ## 3 | 111,111 ## by the sum of digits rule: ## \frac{111,111}{3} = 37,037 ##
  • ## \frac{37,037}{37} = 1,001 ## by inspection
  • It is well known that ## 11| 10^{(2k + 1)} + 1; \frac{1,001}{11} = 91 ##
  • ## 91 = 7 \cdot 13 ## by inspection
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K