Factor the repunit ## R_{6}=111111 ## into a product of primes

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Primes Product
AI Thread Summary
The repunit R_6, represented as 111111, can be factored into prime numbers. It is divisible by 3, as the sum of its digits equals 6, and it is also divisible by 7, 11, and 13 based on a specific divisibility rule. The complete factorization of R_6 is 3 × 7 × 11 × 13 × 37. Additionally, an alternative method shows R_6 can be expressed as 111 × 1001, where 1001 further factors into 7 × 11 × 13. The prime factorization confirms that R_6 = 111111 = 3 × 7 × 11 × 13 × 37.
Math100
Messages
813
Reaction score
229
Homework Statement
Factor the repunit ## R_{6}=111111 ## into a product of primes.
Relevant Equations
None.
Consider the repunit ## R_{6}=111111 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Factor the repunit ## R_{6}=111111 ## into a product of primes.
Relevant Equations:: None.

Consider the repunit ## R_{6}=111111 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Correct.

Or ##111111=111\cdot 1001=(3\cdot 37)\cdot (7\cdot 11 \cdot 13)## also from former results.
 
The test with the 3-digit nonalternating sum works for ##111##, according to a Wikipedia page about divisibility rules.
 
That's a very clever solution, mine is much simpler:
  • ## 3 | 111,111 ## by the sum of digits rule: ## \frac{111,111}{3} = 37,037 ##
  • ## \frac{37,037}{37} = 1,001 ## by inspection
  • It is well known that ## 11| 10^{(2k + 1)} + 1; \frac{1,001}{11} = 91 ##
  • ## 91 = 7 \cdot 13 ## by inspection
 

Similar threads

Back
Top