Fallin' staR's question at Yahoo Answers regarding kinematics

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Kinematics
Click For Summary
SUMMARY

The discussion focuses on a kinematics problem involving a motorbike and a car accelerating from rest at traffic lights. The motorbike accelerates at 2.5 m/s² to a maximum speed of 20 m/s, while the car accelerates at 1.5 m/s² to a maximum speed of 30 m/s. The motorbike and car are side by side again after 22 seconds, and the greatest distance the motorbike is ahead of the car is approximately 53.3 meters. The calculations involve deriving velocity and position functions using integral calculus.

PREREQUISITES
  • Understanding of kinematics, specifically acceleration, velocity, and displacement.
  • Familiarity with integral calculus for deriving motion equations.
  • Ability to interpret piecewise functions in the context of motion.
  • Knowledge of graphing techniques for velocity and displacement-time graphs.
NEXT STEPS
  • Study the derivation of kinematic equations using integral calculus.
  • Learn how to graph piecewise functions, particularly in the context of motion.
  • Explore the concept of maximum displacement in kinematic scenarios.
  • Investigate advanced kinematics topics, such as projectile motion and circular motion.
USEFUL FOR

Students studying A-Level mechanics, physics educators, and anyone interested in understanding the principles of motion and acceleration in real-world scenarios.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Maths Prob5: Velocity & Acceleration?

A motorbike and a car are waiting side by side at traffic lights, when the lights turn to green, the motorbike accelerates at a 2.5 m/s² up to a top speed of 20 m/s, and the car accelerates at 1.5 m/s² up to a top speed of 30 m/s . Both then continue to move at constant speed. Draw (t,v) graphs for each vehicle, using the same axes, and sketch the (t,s) graphs.

(a) after what time will the motorbike and the car again be side by side?
(b) what is the greatest distance that the motorbike is in front of the car?

No need to show the Graphs, BUT I do want to know how to draw Displacement-time Graph when the object accelerates up to a point and then moves in a constant velocity, maybe accelerated part is curve line ?!

ANSWERS: (a) 22s (b) 53.3m

#Mechanics #A-Level

HELP!

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello Fallin' staR,

We will let $a(t)$ be acceleration, $v(t)$ be velocity, and $s(t)$ be position, and use a subscript of $\text{M}$ for the motorbike and a subscript of $\text{C}$ for the car.

For the motorbike, during the time its acceleration is greater than zero, that is, when its velocity is changing, we may state:

$$\int_0^{v(t)}\,du=\frac{5}{2}\int_0^t\,dw$$

$$v(t)=\frac{5}{2}t$$

Now, we need to find at what value of $t$ we have $v(t)=20$, thus:

$$20=\frac{5}{2}t$$

Solve for $t$:

$$t=8$$

And so we may now give the velocity of the motorbike as:

$$v_{\text{M}}(t)=\begin{cases}\frac{5}{2}t & t<8\\ 20 & 8\le t \\ \end{cases}$$

For the car, during the time its acceleration is greater than zero, that is, when its velocity is changing, we may state:

$$\int_0^{v(t)}\,du=\frac{3}{2}\int_0^t\,dw$$

$$v(t)=\frac{3}{2}t$$

Now, we need to find at what value of $t$ we have $v(t)=30$, thus:

$$30=\frac{3}{2}t$$

Solve for $t$:

$$t=20$$

And so we may now give the velocity of the car as:

$$v_{\text{C}}(t)=\begin{cases}\frac{3}{2}t & t<20\\ 30 & 20\le t \\ \end{cases}$$

Here is a plot of the two velocity functions on the same axes:

View attachment 1234

To generate this graph, I used the command:

piecewise[{{(5/2)t,0<=t<8},{20,8<=t}}],piecewise[{{(3/2)t,0<=t<20},{30,20<=t}}] where t=0 to 30

at Wolfram|Alpha: Computational Knowledge Engine

Now, to find the position function of the motorbike, we may use:

On the interval $0\le t<8$:

$$\int_0^{s(t)}\,du=\frac{5}{2}\int_0^{t} w\,dw$$

$$s(t)=\frac{5}{4}t^2$$

We will need to know that:

$$s(8)=80$$

On the interval $8\le t$:

$$\int_{s(8)}^{s(t)}\,du=20\int_8^t \,dw$$

$$s(t)=20t-80$$

Thus, we may state:

$$s_{\text{M}}(t)=\begin{cases}\frac{5}{4}t^2 & t<8\\ 20t-80 & 8\le t \\ \end{cases}$$

Now, to find the position function of the car, we may use:

On the interval $0\le t<20$:

$$\int_0^{s(t)}\,du=\frac{3}{2}\int_0^t w\,dw$$

$$s(t)=\frac{3}{4}t^2$$

We will need to know that:

$$s(20)=300$$

On the interval $20\le t$:

$$\int_{s(20)}^{s(t)}\,du=30\int_{20}^t \,dw$$

$$s(t)=30t-300$$

Thus, we may state:

$$s_{\text{C}}(t)=\begin{cases}\frac{3}{4}t^2 & t<20\\ 30t-300 & 20\le t \\ \end{cases}$$

Using the command:

piecewise[{{(5/4)t^2,0<=t<8},{20t-80,8<=t}}],piecewise[{{(3/4)t^2,0<=t<20},{30t-300,20<=t}}] where t=0 to 30

we obtain the plot:

View attachment 1235

Now we may answer the two questions:

(a) after what time will the motorbike and the car again be side by side?

From the graph, we see we want to equate the two linear portions of the position functions:

$$20t-80=30t-300$$

$$10t=220$$

$$t=22\text{ s}$$

Thus, we find that the motorbike and the car are again side by side 22 seconds after the traffic light turns green.

(b) what is the greatest distance that the motorbike is in front of the car?

The graph shows us that this will occur on the interval $8<t<20$. Hence we want to maximize the function:

$$f(t)=\left(20t-80 \right)-\left(\frac{3}{4}t^2 \right)=-\frac{3}{4}t^2+20t-80$$

Completing the square, we find:

$$f(t)=-\frac{3}{4}\left(t-\frac{40}{3} \right)^2+\frac{160}{3}$$

Hence:

$$f_{\max}=\frac{160}{3}\text{ m}$$

And so we find the greatest distance that the motorbike is in front of the car to be about 53.3 m.
 

Attachments

  • fallinstar1.jpg
    fallinstar1.jpg
    7.8 KB · Views: 115
  • fallinstar2.jpg
    fallinstar2.jpg
    8.4 KB · Views: 103

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
18
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
4K
Replies
20
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K