Exterior fields[edit]
Skin depth vs. frequency for some materials at room temperature, red vertical line denotes 50 Hz frequency:
Effectiveness of shielding of a static electric field is largely independent of the geometry of the conductive material, however, static magnetic fields can penetrate the shield completely.
In the case of a varying electromagnetic fields, the faster the variations are (i.e., the higher the frequencies), the better the material resists magnetic field penetration. In this case the shielding also depends on the
electrical conductivity, the magnetic properties of the conductive materials used in the cages, as well as their thicknesses.
A good idea of the effectiveness of a Faraday shield can be obtained from considerations of
skin depth. With skin depth, the current flowing is mostly in the surface, and decays exponentially with depth through the material. Because a Faraday shield has finite thickness, this determines how well the shield works; a thicker shield can attenuate electromagnetic fields better, and to a lower frequency.