Faster-than-Light Causality-Flip: Thought Experiment Reference?

  • Context: Undergrad 
  • Thread starter Thread starter Mikeal
  • Start date Start date
  • Tags Tags
    Causality
Click For Summary

Discussion Overview

The discussion centers around a thought experiment involving faster-than-light (FTL) travel and its implications for causality, specifically through a scenario with a bullet fired at a moving train. Participants explore the conditions under which an observer on the train might perceive events in a different order than an observer on the ground, raising questions about the nature of time and causality in the context of special relativity.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant describes a thought experiment where a bullet is fired at a speeding train, questioning the combination of speeds that would allow a passenger on the train to see the bullet exit the front before it enters the back.
  • Another participant mentions that exceeding the speed of light (##c##) would result in causality violations in some frames, referencing the "tachyonic anti-telephone" as a related concept that illustrates potential paradoxes.
  • A detailed mathematical analysis is provided, showing how the time and position of the bullet's entry and exit can be calculated in different frames, concluding that FTL speeds can lead to reversed event order in certain conditions.
  • Further calculations confirm that if the bullet's speed exceeds the speed of light, it results in a negative time coordinate in the train's frame, indicating a breakdown of causality.

Areas of Agreement / Disagreement

Participants express differing views on the implications of FTL speeds and their effects on causality. While some agree on the mathematical outcomes of the thought experiment, there is no consensus on the broader implications or interpretations of these results.

Contextual Notes

The discussion includes complex mathematical transformations and assumptions about the speeds involved, which may not be universally accepted or applicable in all contexts. The implications of FTL travel remain unresolved and speculative.

Mikeal
Messages
27
Reaction score
3
TL;DR
Bullet and train thought experiment
A few years ago I was studying special relativity and came across a thought experiment that explored a faster-than-light causality-flip. It consisted of an observer on the track-side firing a bullet at a speeding train, with the bullet entering the back of a carriage and exiting the front. There was a passenger in the center of the carriage witnessing the same event. The question was what combination of bullet speed and train speed would case the carriage-bound observer to see the bullet exiting the front before they saw it entering the back. Does anyone have a link to that though experiment reference?
 
Physics news on Phys.org
Either exceeding ##c## will do it in some frame - which is impossible. The so-called "tachyonic anti-telephone" is a related thought experiment, which demonstrates the kind of "kill your own grandfather" paradoxes you could get if it were possible.
 
  • Like
Likes   Reactions: topsquark
Mikeal said:
TL;DR Summary: Bullet and train thought experiment

A few years ago I was studying special relativity and came across a thought experiment that explored a faster-than-light causality-flip. It consisted of an observer on the track-side firing a bullet at a speeding train, with the bullet entering the back of a carriage and exiting the front. There was a passenger in the center of the carriage witnessing the same event. The question was what combination of bullet speed and train speed would case the carriage-bound observer to see the bullet exiting the front before they saw it entering the back. Does anyone have a link to that though experiment reference?
Suppose we have a train traveling at speed ##v## in some inertial frame and a bullet moving at speed ##u > v## in the same direction. If we take the origin to be when the bullet enters the back of the train, then the bullet emerges from the front of the train at:$$t = \frac{L}{u-v}, \ x = \frac{Lu}{u - v}$$Where ##L## is the length of the train in this frame. We can transform that event to the rest frame of the moving train to get the time coordinate:$$t' = \frac{\gamma_v L}{u - v}\big (1 - \frac {uv}{c^2} \big )$$First, just to check SR, we can take the speed of the bullet ##u \approx c## (or consider a beam of light instead of a bullet and have ##u =c##). In which case, we get:$$t' = \frac{\gamma_vL}{c} > 0$$And we see that the order of events is preserved across both frames (and, indeed, any other frame) for all valid speeds.

Suppose, however, we naively allow ##u > c##. If ##u## is large enough, then we can make ##\frac{uv}{c^2} > 1## and get ##t' < 0##. Thereby reversing the order of the events in the train frame.

This shows that FTL speeds and the Lorentz Transformation do not in general preserve causality. E.g. if in this case we consider the bullet fired from the back of the train, then we have a physical contradiction between the two frames.
 
Last edited:
  • Like
Likes   Reactions: topsquark and Ibix
PeroK said:
Suppose we have a train traveling at speed ##v## in some inertial frame and a bullet moving at speed ##u > v## in the same direction. If we take the origin to be when the bullet enters the back of the train, then the bullet emerges from the front of the train at:$$t = \frac{L}{u-v}, \ x = \frac{Lu}{u - v}$$Where ##L## is the length of the train in this frame. We can transform that event to the rest frame of the moving train to get the time coordinate:$$t' = \frac{\gamma_v L}{u - v}\big (1 - \frac {uv}{c^2} \big )$$First, just to check SR, we can take the speed of the bullet ##u \approx c## (or consider a beam of light instead of a bullet and have ##u =c##). In which case, we get:$$t' = \frac{\gamma_vL}{c} > 0$$And we see that the order of events is preserved across both frames (and, indeed, any other frame) for all valid speeds.

Suppose, however, we naively allow ##u > c##. If ##u## is large enough, then we can make ##\frac{uv}{c^2} > 1## and get ##t' < 0##. Thereby reversing the order of the events in the train frame.

This shows that FTL speeds and the Lorentz Transformation do not in general preserve causality. E.g. if in this case we consider the bullet fired from the back of the train, then we have a physical contradiction between the two frames.
The above derivation confirms the result I came up with a while ago and explains the steps involved. Thanks.
 
  • Like
Likes   Reactions: vanhees71 and PeroK

Similar threads

  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K