Faster-than-Light Causality-Flip: Thought Experiment Reference?

  • Context: Undergrad 
  • Thread starter Thread starter Mikeal
  • Start date Start date
  • Tags Tags
    Causality
Click For Summary
SUMMARY

The discussion centers on a thought experiment involving special relativity, where a bullet is fired at a speeding train. The key question is the combination of bullet speed (u) and train speed (v) that would allow an observer in the train to see the bullet exit the front before it enters the back. The analysis demonstrates that allowing superluminal speeds (u > c) leads to a violation of causality, as shown through Lorentz transformations, confirming that such scenarios yield physical contradictions across different frames of reference.

PREREQUISITES
  • Understanding of special relativity principles
  • Familiarity with Lorentz transformations
  • Knowledge of superluminal speeds and their implications
  • Basic grasp of thought experiments in physics
NEXT STEPS
  • Research the implications of tachyons in theoretical physics
  • Study the concept of causality in special relativity
  • Explore advanced applications of Lorentz transformations
  • Investigate other thought experiments related to faster-than-light travel
USEFUL FOR

Physicists, students of theoretical physics, and anyone interested in the implications of special relativity and causality in high-speed scenarios.

Mikeal
Messages
27
Reaction score
3
TL;DR
Bullet and train thought experiment
A few years ago I was studying special relativity and came across a thought experiment that explored a faster-than-light causality-flip. It consisted of an observer on the track-side firing a bullet at a speeding train, with the bullet entering the back of a carriage and exiting the front. There was a passenger in the center of the carriage witnessing the same event. The question was what combination of bullet speed and train speed would case the carriage-bound observer to see the bullet exiting the front before they saw it entering the back. Does anyone have a link to that though experiment reference?
 
Physics news on Phys.org
Either exceeding ##c## will do it in some frame - which is impossible. The so-called "tachyonic anti-telephone" is a related thought experiment, which demonstrates the kind of "kill your own grandfather" paradoxes you could get if it were possible.
 
  • Like
Likes   Reactions: topsquark
Mikeal said:
TL;DR Summary: Bullet and train thought experiment

A few years ago I was studying special relativity and came across a thought experiment that explored a faster-than-light causality-flip. It consisted of an observer on the track-side firing a bullet at a speeding train, with the bullet entering the back of a carriage and exiting the front. There was a passenger in the center of the carriage witnessing the same event. The question was what combination of bullet speed and train speed would case the carriage-bound observer to see the bullet exiting the front before they saw it entering the back. Does anyone have a link to that though experiment reference?
Suppose we have a train traveling at speed ##v## in some inertial frame and a bullet moving at speed ##u > v## in the same direction. If we take the origin to be when the bullet enters the back of the train, then the bullet emerges from the front of the train at:$$t = \frac{L}{u-v}, \ x = \frac{Lu}{u - v}$$Where ##L## is the length of the train in this frame. We can transform that event to the rest frame of the moving train to get the time coordinate:$$t' = \frac{\gamma_v L}{u - v}\big (1 - \frac {uv}{c^2} \big )$$First, just to check SR, we can take the speed of the bullet ##u \approx c## (or consider a beam of light instead of a bullet and have ##u =c##). In which case, we get:$$t' = \frac{\gamma_vL}{c} > 0$$And we see that the order of events is preserved across both frames (and, indeed, any other frame) for all valid speeds.

Suppose, however, we naively allow ##u > c##. If ##u## is large enough, then we can make ##\frac{uv}{c^2} > 1## and get ##t' < 0##. Thereby reversing the order of the events in the train frame.

This shows that FTL speeds and the Lorentz Transformation do not in general preserve causality. E.g. if in this case we consider the bullet fired from the back of the train, then we have a physical contradiction between the two frames.
 
Last edited:
  • Like
Likes   Reactions: topsquark and Ibix
PeroK said:
Suppose we have a train traveling at speed ##v## in some inertial frame and a bullet moving at speed ##u > v## in the same direction. If we take the origin to be when the bullet enters the back of the train, then the bullet emerges from the front of the train at:$$t = \frac{L}{u-v}, \ x = \frac{Lu}{u - v}$$Where ##L## is the length of the train in this frame. We can transform that event to the rest frame of the moving train to get the time coordinate:$$t' = \frac{\gamma_v L}{u - v}\big (1 - \frac {uv}{c^2} \big )$$First, just to check SR, we can take the speed of the bullet ##u \approx c## (or consider a beam of light instead of a bullet and have ##u =c##). In which case, we get:$$t' = \frac{\gamma_vL}{c} > 0$$And we see that the order of events is preserved across both frames (and, indeed, any other frame) for all valid speeds.

Suppose, however, we naively allow ##u > c##. If ##u## is large enough, then we can make ##\frac{uv}{c^2} > 1## and get ##t' < 0##. Thereby reversing the order of the events in the train frame.

This shows that FTL speeds and the Lorentz Transformation do not in general preserve causality. E.g. if in this case we consider the bullet fired from the back of the train, then we have a physical contradiction between the two frames.
The above derivation confirms the result I came up with a while ago and explains the steps involved. Thanks.
 
  • Like
Likes   Reactions: vanhees71 and PeroK

Similar threads

  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K