Hi. I'm studying Finite Elements Method, I was readding a paper written by Danielle Boffi and in a part dedicated to the approximation of eigenvalues in mixed form, it's about approximating eigenvalues in the Hilbert Spaces [tex]\Phi[/tex] and [tex]\Xi[/tex](adsbygoogle = window.adsbygoogle || []).push({});

Then it says:

"If we suppose that there exists Hilbert Spaces [tex]H_{\Phi}[/tex] and [tex]H_{\Xi}[/tex] such that the following dense and continuous embeddings hold in a compatible way

[tex]\Phi \subset H_{\Phi} \simeq H_{\Phi} ' \subset \Phi'[/tex]

[tex]\Xi \subset H_{\Xi} \simeq H_{\Xi} ' \subset \Xi'[/tex]

Here [tex]\subset[/tex] means dense and continously embedded.

I'm not sure why it does that, I have read more than one time that they work with a space identified with it's dual space, as they're Hilbert Spaces I know you can do it using Riesz Representation theorem, but I don't exacly see why they're doing this.

I didn't know why they don't simply identify [tex]\Phi[/tex] with [tex]\Phi'[/tex].

I have found an advice against identifying a space which is not [tex]L^{2}[/tex] with it's dual, because otherwise in constructions like this, if [tex]H_{\Phi}=L^{2}[/tex] and [tex]\Phi=H^{1}[/tex] we would end up identifying the four spaces [tex]\Phi \equiv H_{\Phi} \equiv H_{\Phi} ' \equiv \Phi'[/tex] and it would mean that you're identifying a function with it's laplacian which is (and here I'm quoting a book) ""the beggining of the end""

I'm new in this of variational formulations and I don't have a strong background on partial differential equations, I have more background on functional and real analysis, I'm studying this subject to make my Licenciatura's thesis in this but I'm really lost sometimes, this is as clear as I could make the question so feel free to ask me to clarify something if I wasn't clear enough.

PD: I don't know how to write in latex without making a new line.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A FEM, Space embedding doubt

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads for Space embedding doubt |
---|

A Wave equation in free space |

A Constructing a function space to automatically satisfy BCs |

**Physics Forums | Science Articles, Homework Help, Discussion**