Find All Integers for Equal Sum Disjoint Union Sets

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
SUMMARY

The integers \( n \) for which the set \( \{1, 2, 3, \ldots, n\} \) can be expressed as the disjoint union of subsets \( A \), \( B \), and \( C \) with equal sums are those divisible by 3. This conclusion is supported by the mathematical properties of summation and partitioning of integers. The discussion emphasizes the necessity of divisibility by 3 to achieve equal partitioning among the subsets.

PREREQUISITES
  • Understanding of set theory and disjoint unions
  • Basic knowledge of integer properties and divisibility
  • Familiarity with mathematical notation and summation
  • Concept of partitioning sets into equal subsets
NEXT STEPS
  • Study the properties of integer partitions in combinatorics
  • Explore the concept of modular arithmetic, specifically divisibility rules
  • Investigate advanced set theory, focusing on disjoint unions
  • Learn about equal sum partition problems in number theory
USEFUL FOR

Mathematicians, students studying combinatorics, and anyone interested in number theory and set partitioning problems.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
 
Mathematics news on Phys.org
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
Wouldn't that just be all (non-negative) integers such that n is divisible by 3??

-Dan
 
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.

sum of n integers has to be multiple of 3.

So the number of numbers has to be 3n + 3 or 3n + 2

each set can not contain 1 element each then the sum cannot be equal

so start with 5 we have 3 set $5,(1,4),(2,3)$

for 6 we have $(1,6),(2,5),(3,4)$

for 9 (from magic square we get $(2,9,4), (3,5,7), (8,1,6)$

for 8 we have $(8,4), (2,7,3), (1,5,6)$

now for any number of the form $3n + 2 ( n >=4)$ is of the form $9k + 2 ( 9(k-1) + 6 + 5)$ or $9k + 5$ or $9k + 8$

by grouping as above we can get any number of the from 3n + 2 into 3 equal part and of the form 3n into equal parts

so number of the from $3n + 2$ or $3n + 3$ (n >= 1) (same as 3k with k >=2)
 
...sum of elements...
Got it now.

-Dan
 
Thankyou, kaliprasad, for your participation :cool:

I believe, the suggested solution below is in overall agreement with your considerations:

Since \[\sum_{x\in A}x +\sum_{x\in B}x+ \sum_{x\in C}x = \frac{n(n+1)}{2}\]

the RHS must be divisible by $3$ and therefore $n$ is congruent to one of $0,2,3,5$ modulo $6$.
Now we prove, that if $n$ is congruent to one of $0,2,3,5$ modulo $6$ and $n > 4$, then such a partition exists.

If we can find such partition for some $n$, then we can enlarge it to an admissible partition for $n+6$ by adjoining $n+1$ and $n+6$ to $A$; $n+2$ and $n+5$ to $B$; $n+3$ and $n+4$ to $C$.
For $n = 5,6,8,9$ we have the following partitions:

$n = 5 \;\;\;\;\;\;A = \{1,4\}\;\;\;\;\;\;B=\{2,3\}\;\;\;\;\;\;C = \{5\}$

$n = 6\;\;\;\;\;\;A = \{1,6\}\;\;\;\;\;\;B=\{2,5\}\;\;\;\;\;\;C = \{3,4\}$

$n = 8\;\;\;\;\;\;A = \{1,2,3,6\}\;\;\;\;B=\{5,7\}\;\;\;\;\;C = \{4,8\}$

$n = 9\;\;\;\;\;\;A = \{1,2,3,4,5\}\;\;\;B=\{7,8\}\;\;\;\;\;C = \{6,9\}$

Obviously, for $n \le 4$ such a partition does not exist.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K