MHB Find All Integers for Equal Sum Disjoint Union Sets

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The discussion focuses on identifying integers \( n \) for which the set \( \{1,2,3,4, ...,n\} \) can be partitioned into three subsets \( A \), \( B \), and \( C \) with equal sums. A key point raised is that \( n \) must be divisible by 3 to achieve this equal partitioning. Participants express agreement on this condition, confirming that it aligns with the mathematical requirements for such a disjoint union. The conversation emphasizes the necessity of divisibility by 3 for the solution to hold true. Overall, the consensus is that only integers satisfying this divisibility condition can form the desired subsets.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
 
Mathematics news on Phys.org
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
Wouldn't that just be all (non-negative) integers such that n is divisible by 3??

-Dan
 
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.

sum of n integers has to be multiple of 3.

So the number of numbers has to be 3n + 3 or 3n + 2

each set can not contain 1 element each then the sum cannot be equal

so start with 5 we have 3 set $5,(1,4),(2,3)$

for 6 we have $(1,6),(2,5),(3,4)$

for 9 (from magic square we get $(2,9,4), (3,5,7), (8,1,6)$

for 8 we have $(8,4), (2,7,3), (1,5,6)$

now for any number of the form $3n + 2 ( n >=4)$ is of the form $9k + 2 ( 9(k-1) + 6 + 5)$ or $9k + 5$ or $9k + 8$

by grouping as above we can get any number of the from 3n + 2 into 3 equal part and of the form 3n into equal parts

so number of the from $3n + 2$ or $3n + 3$ (n >= 1) (same as 3k with k >=2)
 
...sum of elements...
Got it now.

-Dan
 
Thankyou, kaliprasad, for your participation :cool:

I believe, the suggested solution below is in overall agreement with your considerations:

Since \[\sum_{x\in A}x +\sum_{x\in B}x+ \sum_{x\in C}x = \frac{n(n+1)}{2}\]

the RHS must be divisible by $3$ and therefore $n$ is congruent to one of $0,2,3,5$ modulo $6$.
Now we prove, that if $n$ is congruent to one of $0,2,3,5$ modulo $6$ and $n > 4$, then such a partition exists.

If we can find such partition for some $n$, then we can enlarge it to an admissible partition for $n+6$ by adjoining $n+1$ and $n+6$ to $A$; $n+2$ and $n+5$ to $B$; $n+3$ and $n+4$ to $C$.
For $n = 5,6,8,9$ we have the following partitions:

$n = 5 \;\;\;\;\;\;A = \{1,4\}\;\;\;\;\;\;B=\{2,3\}\;\;\;\;\;\;C = \{5\}$

$n = 6\;\;\;\;\;\;A = \{1,6\}\;\;\;\;\;\;B=\{2,5\}\;\;\;\;\;\;C = \{3,4\}$

$n = 8\;\;\;\;\;\;A = \{1,2,3,6\}\;\;\;\;B=\{5,7\}\;\;\;\;\;C = \{4,8\}$

$n = 9\;\;\;\;\;\;A = \{1,2,3,4,5\}\;\;\;B=\{7,8\}\;\;\;\;\;C = \{6,9\}$

Obviously, for $n \le 4$ such a partition does not exist.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
5
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
11
Views
2K
Replies
5
Views
3K
Replies
1
Views
2K
Back
Top