Find All Integers for Equal Sum Disjoint Union Sets

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary

Discussion Overview

The discussion revolves around identifying all integers \( n \) for which the set \( \{1,2,3,4, ...,n\} \) can be partitioned into three disjoint subsets \( A \), \( B \), and \( C \) such that the sum of the elements in each subset is equal. The scope includes mathematical reasoning and exploration of set theory concepts.

Discussion Character

  • Mathematical reasoning, Exploratory

Main Points Raised

  • One participant, Dan, suggests that all non-negative integers \( n \) that are divisible by 3 could satisfy the condition for equal sums in the subsets.
  • Another participant acknowledges understanding the problem but does not provide additional insights or counterarguments.
  • A later reply expresses gratitude for a previous contribution but does not elaborate on the mathematical reasoning or conclusions.

Areas of Agreement / Disagreement

There is no clear consensus on the solution, as Dan proposes a specific condition (divisibility by 3) without further validation or counterpoints from others in the thread.

Contextual Notes

The discussion does not address potential limitations or assumptions regarding the nature of the subsets or the properties of integers involved.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
 
Mathematics news on Phys.org
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
Wouldn't that just be all (non-negative) integers such that n is divisible by 3??

-Dan
 
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.

sum of n integers has to be multiple of 3.

So the number of numbers has to be 3n + 3 or 3n + 2

each set can not contain 1 element each then the sum cannot be equal

so start with 5 we have 3 set $5,(1,4),(2,3)$

for 6 we have $(1,6),(2,5),(3,4)$

for 9 (from magic square we get $(2,9,4), (3,5,7), (8,1,6)$

for 8 we have $(8,4), (2,7,3), (1,5,6)$

now for any number of the form $3n + 2 ( n >=4)$ is of the form $9k + 2 ( 9(k-1) + 6 + 5)$ or $9k + 5$ or $9k + 8$

by grouping as above we can get any number of the from 3n + 2 into 3 equal part and of the form 3n into equal parts

so number of the from $3n + 2$ or $3n + 3$ (n >= 1) (same as 3k with k >=2)
 
...sum of elements...
Got it now.

-Dan
 
Thankyou, kaliprasad, for your participation :cool:

I believe, the suggested solution below is in overall agreement with your considerations:

Since \[\sum_{x\in A}x +\sum_{x\in B}x+ \sum_{x\in C}x = \frac{n(n+1)}{2}\]

the RHS must be divisible by $3$ and therefore $n$ is congruent to one of $0,2,3,5$ modulo $6$.
Now we prove, that if $n$ is congruent to one of $0,2,3,5$ modulo $6$ and $n > 4$, then such a partition exists.

If we can find such partition for some $n$, then we can enlarge it to an admissible partition for $n+6$ by adjoining $n+1$ and $n+6$ to $A$; $n+2$ and $n+5$ to $B$; $n+3$ and $n+4$ to $C$.
For $n = 5,6,8,9$ we have the following partitions:

$n = 5 \;\;\;\;\;\;A = \{1,4\}\;\;\;\;\;\;B=\{2,3\}\;\;\;\;\;\;C = \{5\}$

$n = 6\;\;\;\;\;\;A = \{1,6\}\;\;\;\;\;\;B=\{2,5\}\;\;\;\;\;\;C = \{3,4\}$

$n = 8\;\;\;\;\;\;A = \{1,2,3,6\}\;\;\;\;B=\{5,7\}\;\;\;\;\;C = \{4,8\}$

$n = 9\;\;\;\;\;\;A = \{1,2,3,4,5\}\;\;\;B=\{7,8\}\;\;\;\;\;C = \{6,9\}$

Obviously, for $n \le 4$ such a partition does not exist.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K