MHB Find All Integers for Equal Sum Disjoint Union Sets

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
 
Mathematics news on Phys.org
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.
Wouldn't that just be all (non-negative) integers such that n is divisible by 3??

-Dan
 
lfdahl said:
Find all integers $n$ such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets $A$ , $B$ , $C$ whose sum of elements are equal.

sum of n integers has to be multiple of 3.

So the number of numbers has to be 3n + 3 or 3n + 2

each set can not contain 1 element each then the sum cannot be equal

so start with 5 we have 3 set $5,(1,4),(2,3)$

for 6 we have $(1,6),(2,5),(3,4)$

for 9 (from magic square we get $(2,9,4), (3,5,7), (8,1,6)$

for 8 we have $(8,4), (2,7,3), (1,5,6)$

now for any number of the form $3n + 2 ( n >=4)$ is of the form $9k + 2 ( 9(k-1) + 6 + 5)$ or $9k + 5$ or $9k + 8$

by grouping as above we can get any number of the from 3n + 2 into 3 equal part and of the form 3n into equal parts

so number of the from $3n + 2$ or $3n + 3$ (n >= 1) (same as 3k with k >=2)
 
...sum of elements...
Got it now.

-Dan
 
Thankyou, kaliprasad, for your participation :cool:

I believe, the suggested solution below is in overall agreement with your considerations:

Since \[\sum_{x\in A}x +\sum_{x\in B}x+ \sum_{x\in C}x = \frac{n(n+1)}{2}\]

the RHS must be divisible by $3$ and therefore $n$ is congruent to one of $0,2,3,5$ modulo $6$.
Now we prove, that if $n$ is congruent to one of $0,2,3,5$ modulo $6$ and $n > 4$, then such a partition exists.

If we can find such partition for some $n$, then we can enlarge it to an admissible partition for $n+6$ by adjoining $n+1$ and $n+6$ to $A$; $n+2$ and $n+5$ to $B$; $n+3$ and $n+4$ to $C$.
For $n = 5,6,8,9$ we have the following partitions:

$n = 5 \;\;\;\;\;\;A = \{1,4\}\;\;\;\;\;\;B=\{2,3\}\;\;\;\;\;\;C = \{5\}$

$n = 6\;\;\;\;\;\;A = \{1,6\}\;\;\;\;\;\;B=\{2,5\}\;\;\;\;\;\;C = \{3,4\}$

$n = 8\;\;\;\;\;\;A = \{1,2,3,6\}\;\;\;\;B=\{5,7\}\;\;\;\;\;C = \{4,8\}$

$n = 9\;\;\;\;\;\;A = \{1,2,3,4,5\}\;\;\;B=\{7,8\}\;\;\;\;\;C = \{6,9\}$

Obviously, for $n \le 4$ such a partition does not exist.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
11
Views
2K
Replies
5
Views
3K
Replies
1
Views
1K
Back
Top