Find all non-negative integers (x,y)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
SUMMARY

The discussion focuses on finding all pairs of non-negative integers (x, y) that satisfy the equation x² + 2·3^y = x(2^(y+1) - 1). Participants provided a simplification method that leads to a clearer understanding of the relationship between x and y. The key takeaway is that the equation can be manipulated to yield specific integer solutions, which were discussed in detail.

PREREQUISITES
  • Understanding of algebraic manipulation and equations
  • Familiarity with non-negative integers
  • Basic knowledge of exponential functions
  • Experience with problem-solving in number theory
NEXT STEPS
  • Explore integer solutions to polynomial equations
  • Study the properties of exponential growth in equations
  • Learn about Diophantine equations and their solutions
  • Investigate simplification techniques for complex algebraic expressions
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in solving algebraic equations involving integers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all paris $(x,\,y)$ of non-negative integers for which $x^2+2\cdot 3^y=x(2^{y+1}-1)$.
 
Mathematics news on Phys.org
Solution of other:
For fixed values of $y$, the original equation is a simple quadratic equation in $x$. For $y\le 5$, the solutions are listed below:

[TABLE="class: grid, width: 500"]
[TR]
[TD]Case[/TD]
[TD]Function[/TD]
[TD]Discriminant[/TD]
[TD]Integer Roots[/TD]
[/TR]
[TR]
[TD]$n=0$[/TD]
[TD]$x^2-x+2=0$[/TD]
[TD]$-7$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=1$[/TD]
[TD]$x^2-3x+6=0$[/TD]
[TD]$-15$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=2$[/TD]
[TD]$x^2-7x+18=0$[/TD]
[TD]$-23$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=3$[/TD]
[TD]$x^2-15x+54=0$[/TD]
[TD]$9$[/TD]
[TD]$x=6$ or $x=9$[/TD]
[/TR]
[TR]
[TD]$n=4$[/TD]
[TD]$x^2-31x+162=0$[/TD]
[TD]$313$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=5$[/TD]
[TD]$x^2-63x+486=0$[/TD]
[TD]$2025$[/TD]
[TD]$x=9$ or $x=54$[/TD]
[/TR]
[/TABLE]

We prove that there is no solution for $y\ge 6$.

Suppose that $(x,\,y)$ satisfies the original equation and $y\ge 6$. Since $x|2\cdot 3^y=x(2^{y+1}-1)-x^2$, we have $x=3^k$ with some $0\le k\le y$ or $x=2\cdot 3^k$ with some $0\le k \le y$.

In the first case, let $m=y-k$, then $2^{y+1}-1=x+\dfrac{2\cdot 3^y}{x}=3^k+3\cdot 3^m$

In the second case, let $k=y-m$, then $2^{y+1}-1=x+\dfrac{2\cdot 3^y}{x}=3^k+3\cdot 3^m$

Hence in both cases we need to find the non negative integer solutions of $3^k+2\cdot 3^m=2^{y+1}-1$, $m+k=y$. (*)

Next we prove bounds for $m,\,k$. From (*), we get

$3^k<2^{y+1}=8^{\tiny\dfrac{y+1}{3}}<9^{\tiny\dfrac{y+1}{3}}=3^{\tiny\dfrac{2(y+1)}{3}}$

and

$2\cdot 3^{m}<2^{y+1}=2\cdot 8^{\tiny\dfrac{y}{3}}<2\cdot 9^{\tiny\dfrac{y}{3}}=2\cdot 3^{\tiny\dfrac{2y}{3}}<2\cdot 3^{\tiny\dfrac{2(y+1)}{3}}$

so $m,\,k<\dfrac{2(y+1)}{3}$.

Combining these inequalities with $m+k=y$, we obtain

$\dfrac{y-2}{3}<m,\,k<\dfrac{2(y+1)}{3}$ (**)

Now, let $h=\text{min}(p,\,q)$. By (**), we have $h>\dfrac{y-2}{3}$, in particular, we have $h>1$. On the LHS of (*), both terms are divisible by $3^h$, therefore, $9|3^h|2^{y+1}-1$. It is easy to check that $ord_g(2)=6$, so $9|2^{y+1}-1$ iff $6|y+1$. Therefore, $y+1=6r$ for some positive integer $r$, adn we can write

$2^{y+1}-1=4^{3r}-1=(4^{2r}+4^r+1)(2^r-1)(2^r+1)$

Notice that the factor $4^{2r}+4^r+1=(4^r-1)^2+3\cdot 4^r$ is divisible by 3, but it is never divisible by 9. The other two factors in $2^{y+1}-1=4^{3r}-1=(4^{2r}+4^r+1)(2^r-1)(2^r+1)$, i.e.e $2^r-1$ and $2^r+1$ are coprime, both are odd and their difference is 2. Since the whole product is divisible by $3^h$, we have either $3^{h-1}|2^r-1$ or $3^{h-1}|2^r+1$.

In any case, we have

$3^{h-1}\le 2^r+1\le 3^r=3^{\tiny\dfrac{y+1}{6}}$

$\dfrac{y-2}{3}-1<h-1\le \dfrac{y+1}{6}$

$n<11$

But this is impossible since we assumed $y\ge 6$ and we proved $6|y+1$.
 
anemone said:
Solution of other:
For fixed values of $y$, the original equation is a simple quadratic equation in $x$. For $y\le 5$, the solutions are listed below:

[TABLE="class: grid, width: 500"]
[TR]
[TD]Case[/TD]
[TD]Function[/TD]
[TD]Discriminant[/TD]
[TD]Integer Roots[/TD]
[/TR]
[TR]
[TD]$n=0$[/TD]
[TD]$x^2-x+2=0$[/TD]
[TD]$-7$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=1$[/TD]
[TD]$x^2-3x+6=0$[/TD]
[TD]$-15$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=2$[/TD]
[TD]$x^2-7x+18=0$[/TD]
[TD]$-23$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=3$[/TD]
[TD]$x^2-15x+54=0$[/TD]
[TD]$9$[/TD]
[TD]$x=6$ or $x=9$[/TD]
[/TR]
[TR]
[TD]$n=4$[/TD]
[TD]$x^2-31x+162=0$[/TD]
[TD]$313$[/TD]
[TD]None[/TD]
[/TR]
[TR]
[TD]$n=5$[/TD]
[TD]$x^2-63x+486=0$[/TD]
[TD]$2025$[/TD]
[TD]$x=9$ or $x=54$[/TD]
[/TR]
[/TABLE]

We prove that there is no solution for $y\ge 6$.

Suppose that $(x,\,y)$ satisfies the original equation and $y\ge 6$. Since $x|2\cdot 3^y=x(2^{y+1}-1)-x^2$, we have $x=3^k$ with some $0\le k\le y$ or $x=2\cdot 3^k$ with some $0\le k \le y$.

In the first case, let $m=y-k$, then $2^{y+1}-1=x+\dfrac{2\cdot 3^y}{x}=3^k+3\cdot 3^m$

In the second case, let $k=y-m$, then $2^{y+1}-1=x+\dfrac{2\cdot 3^y}{x}=3^k+3\cdot 3^m$

Hence in both cases we need to find the non negative integer solutions of $3^k+2\cdot 3^m=2^{y+1}-1$, $m+k=y$. (*)

Next we prove bounds for $m,\,k$. From (*), we get

$3^k<2^{y+1}=8^{\tiny\dfrac{y+1}{3}}<9^{\tiny\dfrac{y+1}{3}}=3^{\tiny\dfrac{2(y+1)}{3}}$

and

$2\cdot 3^{m}<2^{y+1}=2\cdot 8^{\tiny\dfrac{y}{3}}<2\cdot 9^{\tiny\dfrac{y}{3}}=2\cdot 3^{\tiny\dfrac{2y}{3}}<2\cdot 3^{\tiny\dfrac{2(y+1)}{3}}$

so $m,\,k<\dfrac{2(y+1)}{3}$.

Combining these inequalities with $m+k=y$, we obtain

$\dfrac{y-2}{3}<m,\,k<\dfrac{2(y+1)}{3}$ (**)

Now, let $h=\text{min}(p,\,q)$. By (**), we have $h>\dfrac{y-2}{3}$, in particular, we have $h>1$. On the LHS of (*), both terms are divisible by $3^h$, therefore, $9|3^h|2^{y+1}-1$. It is easy to check that $ord_g(2)=6$, so $9|2^{y+1}-1$ iff $6|y+1$. Therefore, $y+1=6r$ for some positive integer $r$, adn we can write

$2^{y+1}-1=4^{3r}-1=(4^{2r}+4^r+1)(2^r-1)(2^r+1)$

Notice that the factor $4^{2r}+4^r+1=(4^r-1)^2+3\cdot 4^r$ is divisible by 3, but it is never divisible by 9. The other two factors in $2^{y+1}-1=4^{3r}-1=(4^{2r}+4^r+1)(2^r-1)(2^r+1)$, i.e.e $2^r-1$ and $2^r+1$ are coprime, both are odd and their difference is 2. Since the whole product is divisible by $3^h$, we have either $3^{h-1}|2^r-1$ or $3^{h-1}|2^r+1$.

In any case, we have

$3^{h-1}\le 2^r+1\le 3^r=3^{\tiny\dfrac{y+1}{6}}$

$\dfrac{y-2}{3}-1<h-1\le \dfrac{y+1}{6}$

$n<11$

But this is impossible since we assumed $y\ge 6$ and we proved $6|y+1$.

good solution we can simplify as below

we can convert $x^2+2\cdot 3^y=x(2^{y+1}-1)$

quadratic in x

$x^2-x(2^{y+1}-1) + 2\cdot 3^y=0$

now discriminant should be greater than zero
$(2^{y+1}-1)^2- 4\cdot 2\cdot 3^y\ge 0$

as y increase 1st term almost doubles and 2 term triples and we get upper limit for y as 5
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K