- #1
beyondthemaths
- 17
- 0
I am reading the book Supergravity.
In chapter 4, section 4.3.2
- Duality for gauge fields and complex scalar:
The simplest case of electromagnetic duality in an interacting field theeory occurs with one abelian gauge field ##A_{\mu}(x)## and a complex scalar field ##Z(x)##. The electromagnetic part of the Lagrangian is:
$$L=-\frac{1}{4}(ImZ)F_{\mu\nu}F^{\mu\nu}-\frac{1}{8}(ReZ)\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$$
The author said:
The gauge Bianci identity and E.OM of our theory are:
$$\partial_{\mu}\tilde{F}^{\mu\nu}=0, \hspace{2cm} \partial_{\mu}[(ImZ)F^{\mu\nu} +i(ReZ)\tilde{F}^{\mu\nu}]=0$$
He continued to say:
$$G^{\mu\nu}=\epsilon^{\mu\nu\rho\sigma}\frac{\delta S}{\delta F^{\rho \sigma}}=-i(ImZ)\tilde{F}^{\mu\nu}+(ReZ)F^{\mu\nu}$$
My question is I tried to carry on the calculations as I moved with the reading, but I failed in deriving the ##G^{\mu\nu}## and I am not getting this final result because I am new to tensors and am trying to learn GR and SUGRA simultaneously and want to get a better picture of how to work this out before I move to more advanced levels.. Any sort of help is appreciated.
In chapter 4, section 4.3.2
- Duality for gauge fields and complex scalar:
The simplest case of electromagnetic duality in an interacting field theeory occurs with one abelian gauge field ##A_{\mu}(x)## and a complex scalar field ##Z(x)##. The electromagnetic part of the Lagrangian is:
$$L=-\frac{1}{4}(ImZ)F_{\mu\nu}F^{\mu\nu}-\frac{1}{8}(ReZ)\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$$
The author said:
The gauge Bianci identity and E.OM of our theory are:
$$\partial_{\mu}\tilde{F}^{\mu\nu}=0, \hspace{2cm} \partial_{\mu}[(ImZ)F^{\mu\nu} +i(ReZ)\tilde{F}^{\mu\nu}]=0$$
He continued to say:
$$G^{\mu\nu}=\epsilon^{\mu\nu\rho\sigma}\frac{\delta S}{\delta F^{\rho \sigma}}=-i(ImZ)\tilde{F}^{\mu\nu}+(ReZ)F^{\mu\nu}$$
My question is I tried to carry on the calculations as I moved with the reading, but I failed in deriving the ##G^{\mu\nu}## and I am not getting this final result because I am new to tensors and am trying to learn GR and SUGRA simultaneously and want to get a better picture of how to work this out before I move to more advanced levels.. Any sort of help is appreciated.