- #1
TelusPig
- 15
- 0
Homework Statement
Find k such that the function [itex]f(x)=ke^{-\frac{x-\mu}{\theta}}[/itex] is a probability density function (pdf), for [itex] x > \mu, \mu[/itex] and [itex]\theta[/itex] are constant.
Homework Equations
The property of a pdf says that the integral of f(x) from [itex]-\infty[/itex] to [itex]\infty[/itex] equals 1, that is [itex]\int\limits_{-\infty}^\infty f(x)dx=1[/itex]
The Attempt at a Solution
[itex]\int\limits_{-\infty}^\infty ke^{-\frac{x-\mu}{\theta}}dx[/itex]
[itex]=k\int\limits_{-\infty}^\infty e^{-\frac{x-\mu}{\theta}}dx[/itex]
Let [itex]t=-\frac{x-\mu}{\theta} => -\theta dt=dx[/itex]
[itex]=> -k\int\limits_\infty^{-\infty} e^t(-\theta)dt[/itex]
[itex]=>k\theta\int\limits_{-\infty}^\infty e^tdt[/itex]
But [itex]e^t[/itex] would diverge going towards infinity? How could this integral be equal to 1. I am not sure what I'm doing wrong.