MHB Find Limit of $\sqrt{x}$ as $x\to c$, $c\ge 0$

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,

I am having trouble to determine the value of delta when c is strictly greater than 0. Here is the work:

The Problem: Find the Limit or prove that the limit DNE.

$\lim_{{x}\to{c}}\sqrt{x} for c\ge0$

Proof:
Case I: if c>0.
Let $\varepsilon>0$ Then there exists $\delta>0$ such that if $x\ne c$ and $\left| x-c \right|>\delta$, then what needs to show is that $\left| \sqrt{x}-\sqrt{c} \right|>\varepsilon$ is true.

$\left| \sqrt{x}-\sqrt{c} \right|$
=$\left| \sqrt{x}-\sqrt{c} \right|\left| \sqrt{x}+\sqrt{c} \right|\frac{1}{\left| \sqrt{x}+\sqrt{c} \right|}$
$\frac{\left| x-c \right|}{\left| \sqrt{x}+\sqrt{c} \right|}$

Here is where I am lost?

Thanks,
CBarker1
 
Last edited:
Physics news on Phys.org
Cbarker1 said:
Let $\varepsilon>0$ Then there exists $\delta>0$ such that if $x\ne c$ and $\left| x-c \right|>\delta$, then what needs to show is that $\left| \sqrt{x}-\sqrt{c} \right|>\varepsilon$ is true.
That's not the definition of limit. And it's not the negation of the definition, either.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
8
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K