Also, your statement that "the numerator part goes 1,-1,-3,-5" is wrong.
What you put in your very first post was:
n=1 (1st der): (1/2)(x^-1/2) = (1/2)(x^(-1/2))
n=2 (2nd der): (1/2)(-1/2)(x^-3/2) = (-1/4)(x^(-3/2))
n=3 (3rd der): (1/2)(-1/2)(-3/2)(x^-5/2) = (+3/8)(x^(-5/2))
n=4 (4th der): (1/2)(-1/2)(-3/2)(-5/2)(x^-7/2) = (-15/16)(x^(-7/2))
(I've added the last in each line.)
so the numerators are 1, -1, 3= 1*3, -15= -1*3*15.
It might help you to realize this:
A product of even integers is 2*4*6*...*2n= (2*1)(2*2)(2*3)...(2*n)= (2*2*2...2)(1*2*3*...n)= 2nn!.
A product of odd integer, 1*3*5*7*...*(2n+1) is missing the even integers: multiply and divide by them:
\frac{1*2*3*4*5*...*(2n)*(2n+1)}{2*4*6*...*(2n)}= \frac{(2n+1)!}{2^n(n!)}