Find order of rotational symmetry for the given shape

Click For Summary
SUMMARY

The order of rotational symmetry for a given shape is determined by the number of distinct angles in the interval [0, 2π) that leave the shape unchanged. In the discussion, the correct order of rotational symmetry for the shape in question is established as 4, while the number of lines of symmetry is confirmed to be 4 as well. The concept of rotational symmetry is clarified, emphasizing that a rotation by 360º (or 0º) is always included in the count. Additionally, the discussion highlights the varying definitions of symmetry in different contexts, particularly regarding the kite shape.

PREREQUISITES
  • Understanding of rotational symmetry concepts
  • Familiarity with angles in radians and degrees
  • Knowledge of geometric shapes and their properties
  • Awareness of different conventions in mathematical literature
NEXT STEPS
  • Research "Geometric transformations and symmetry" for a deeper understanding of symmetry types.
  • Study "Rotational symmetry in polygons" to explore symmetry in various shapes.
  • Examine "Symmetry in art and nature" to see practical applications of symmetry concepts.
  • Learn about "Kite shapes and their properties" to clarify definitions and characteristics.
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in the properties of shapes and symmetry in mathematics.

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Write down;
1. The order of rotational symmetry.
2. The number of lines of symmetry.
Relevant Equations
symmetry and shapes
1646269405556.png


Ok for (1) I would say that the order of rotational symmetry is ##8##. Would that be correct? What about ##4##?

For (2) The number of lines of symmetry is ##4##.

And if one would say infinity for both (1) and (2) would that be correct?And if you consider a kite. Would the order of rotational symmetry be ##1## or ##0##? Cheers guys!

Note;
I do not have the solutions for this problem.
 
Last edited:
Physics news on Phys.org
your answer for (2) is correct.
Infinity would be wrong for both.

A line of symmetry is a line such that the reflection of the image in that line is identical to the original image.

The order of rotational symmetry is the number of different angles in ##[0,2\pi)## such that rotation through that angle around any point leaves the image identical, disregarding any necessary translation. In this case there's an obvious point to choose, being the intersection of the vertical and horizontal lines. How many different angles can you rotate the shape by around that point, and get an unchanged result? List all the angles. Remember to include zero (no rotation) in your count.
 
  • Like
Likes chwala
andrewkirk said:
your answer for (2) is correct.
Infinity would be wrong for both.

A line of symmetry is a line such that the reflection of the image in that line is identical to the original image.

The order of rotational symmetry is the number of different angles in ##[0,2\pi)## such that rotation through that angle around any point leaves the image identical, disregarding any necessary translation. In this case there's an obvious point to choose, being the intersection of the vertical and horizontal lines. How many different angles can you rotate the shape by around that point, and get an unchanged result? List all the angles. Remember to include zero (no rotation) in your count.
Then that's ##8## thanks mate...but do note that the dotted lines that are meeting at the centre of circle weren't in the original shape...hope it doesn't make a difference in the outcome.
 
@chwala No 8 is not correct. I presume your angles are multiples of 45 degrees. But look carefully! - a 45 degree rotation does not leave the figure unchanged, whereas a 90 degree rotation does. That is true whether we include the dotted lines or not - as long as we recognise that a dotted line is not the same as a solid line.
 
  • Like
Likes chwala
I think now you may be confusing me a little bit...yes, it remains unchanged at multiples of ##45## degrees...ie the 1st order of rotation in my understanding is equivalent to a 45 degree turn...a complete turn would realize ##360## degrees divide ##45## degrees = ##8##

Arrrrgh I see your point...the answer is ##4##
 
No, you are not looking closely enough. Rotate the figure 45 degrees and look at the lines inside the inner circle. Are they in the same places? No!
 
  • Like
Likes chwala
And for the kite? i realize different literature may have their view...
 
chwala said:
And for the kite? i realize different literature may have their view...
A rotation by 360º (or if your prefer, by 0º) always counts when assessing the order of rotational symmetry.

The question you must ask yourself is: can the order of rotational symmetry ever be zero?

Also, you have to be careful about how you are defining 'kite'. You can consider a rhombus or a square to be special cases of a kite - which affects the order of symmetry.
 
Steve4Physics said:
A rotation by 360º (or if your prefer, by 0º) always counts when assessing the order of rotational symmetry.

The question you must ask yourself is: can the order of rotational symmetry ever be zero?

Also, you have to be careful about how you are defining 'kite'. You can consider a rhombus or a square to be special cases of a kite - which affects the order of symmetry.
I meant 'kite' in it's literal sense as we know it...I understand that there are different kinds of kite. Having said that,... I am also conversant with your explanation...my only concern is that some literature indicate; no order of rotational symmetry and other literature indicate ##1## as the order of rotational symmetry of a kite...
...no order means what? ##1##?
 
  • #10
chwala said:
...no order means what? ##1##?
If a shape has no rotational symmetry (e.g. a scalene triangle) I would say it's order of symmetry (n) is 1 (in agreement with @andrewkirk's definition in Post #2).

I presume that is the most common convention. (I've not seen others but they may exist - I'm not a mathematician!)

If you are studying for an examination, simply make sure you are using the convention required by the examination board.

If you are reading generally, simply make sure you are aware of which convention the author is using.
 
  • Like
Likes chwala

Similar threads

Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K