Find Polynomial of Degree <2 to Satisfy (1, p), (2, q), (3, r)

  • Context: Undergrad 
  • Thread starter Thread starter VinnyCee
  • Start date Start date
  • Tags Tags
    Degree Polynomial
Click For Summary
SUMMARY

The discussion centers on finding a polynomial of degree less than 2 that passes through three specified points: (1, p), (2, q), and (3, r). It is established that a polynomial of degree less than 2 can only satisfy two points, as it is linear and defined by two parameters. The correct polynomial form is derived as f(t) = a + bt + ct², where coefficients a, b, and c are expressed in terms of p, q, and r. The conclusion confirms that a polynomial of degree less than 2 cannot satisfy all three points simultaneously for arbitrary values of p, q, and r.

PREREQUISITES
  • Understanding of polynomial functions and their degrees
  • Familiarity with linear algebra concepts, particularly matrix operations
  • Knowledge of Gaussian elimination for solving systems of equations
  • Basic calculus concepts related to polynomial behavior
NEXT STEPS
  • Study polynomial interpolation techniques, such as Lagrange interpolation
  • Learn about the implications of polynomial degree on function behavior
  • Explore linear regression methods for fitting data points
  • Investigate the conditions under which polynomial equations can be solved for multiple points
USEFUL FOR

Mathematicians, data analysts, and students studying polynomial functions and interpolation methods will benefit from this discussion.

VinnyCee
Messages
486
Reaction score
0
Find a polynomial of degree < 2 [a polynomial of the form f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2] whose graph goes through the points (1, p), (2, q), (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?


Here is what I have so far:

(1, p) ==> p\,=\,a\,+\,b\,+\,c
(2, q) ==> q\,=\,a\,+\,2b\,+\,4c
(3, r) ==> r\,=\,a\,+\,3b\,+\,9c

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 1 &amp; 2 &amp; 4 &amp; q \\<br /> 1 &amp; 3 &amp; 9 &amp; r<br /> \end{array} \right]<br /> \end{displaymath}

R_2\,=\,R_2\,-\,R_1
R_3\,=\,R_3\,-\,R_1

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 2 &amp; 8 &amp; r - p<br /> \end{array} \right]<br /> \end{displaymath}

R_3\,=\,R_3\,-\,2R_2

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 0 &amp; 2 &amp; r - q<br /> \end{array} \right]<br /> \end{displaymath}

R_3\,=\frac{1}{2}\,R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}

R_2\,=\,R_2\,-\,3R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 0 &amp; \frac{5}{2}\,q\,-\,p\,-\,\frac{3}{2}\,r \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}

R_1\,=\,R_1\,-\,R_2\,-\,R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 0 &amp; 0 &amp; 2p\,-\,2q\,+\,r \\<br /> 0 &amp; 1 &amp; 0 &amp; \frac{1}{2}\left(5q\,-\,2p\,-\,3r\right) \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}

a\,=\,2p\,-\,2q\,+\,r
b\,=\,\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)
c\,=\,\frac{1}{2}\,\left(r\,-\,q\right)


f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2
f\left(t\right)\,=\,\left(2p\,-\,2q\,+\,r\right)\,+\,\left[\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)\right]\,t\,+\,\left[\frac{1}{2}\,\left(r\,-\,q\right)\right]\,t^2
f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,-\,\frac{1}{2}\,q\,t^2\,+\,\frac{5}{2}\,q\,t\,-\,\frac{3}{2}\,r\,t\,-\,p\,t\,+\,2\,p\,+\,r\,-\,2\,q

But when I try a set of arbitrary numbers [(1, 8), (2, 12), (3, 3)], I get an equation that does not match the points:

f\left(t\right)\,=\,-\frac{9}{2}\,t^2\,+\,\frac{35}{2}\,t\,-\,5

f\left(1\right)\,=\,-\frac{9}{2}\,(1)^2\,+\,\frac{35}{2}\,(1)\,-\,5\,=\,8

f\left(2\right)\,=\,-\frac{9}{2}\,(2)^2\,+\,\frac{35}{2}\,(2)\,-\,5\,=\,12

f\left(3\right)\,=\,-\frac{9}{2}\,(3)^2\,+\,\frac{35}{2}\,(3)\,-\,5\,=\,7

However, f\left(3\right) should be equal to r, which is 3, not 7.

Please help:)
 
Last edited:
Physics news on Phys.org
VinnyCee said:
Find a polynomial of degree < 2 [a polynomial of the form ] whose graph goes through the points (1, p), (2, q), (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?
Of degree < 2? Then it is linear, of the form y= mx+ b and you can only determine only the two numberss m and b. In general 2 equations will do that. You can choose m and b so that 2 of the requirements (1, p), (2, q), (3, r) are satisfied but not all 3.
 
For (p, q, r) = (0, 0, 0) we have (a, b, c) = (0, 0, 0), and therefore a zero polynomial, which has a degree undefined or -\infty, so it's less than 2. :biggrin:
 
The title says "Find a >2 degree polynomial" and the post itself says
"Find a polynomial of degree < 2".

Is it any wonder I'm confused!
 
VinnyCee said:
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 2 &amp; 8 &amp; r - p<br /> \end{array} \right]<br /> \end{displaymath}

R_3\,=\,R_3\,-\,2R_2

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 0 &amp; 2 &amp; r - q<br /> \end{array} \right]<br /> \end{displaymath}

Confusion about <2 vs >2 aside, your derivation has an error in the quoted section. You substract 2 R_2 from R_3, but in the augmented part of the matrix you've only subtracted 1 R_2, resulting in r - q instead of r + p - 2q. I didn't check to see if everything else was correct, but this is certainly a place to start with.
 
Sorry for the confusion!

The polynomial needs to have a degree of GREATER THAN OR EQUAL TO 2.

So it needs to have at least one squared term.

Here is the corrected derivation with help from Mute (Thanks!):

(1, p) ==> p\,=\,a\,+\,b\,+\,c
(2, q) ==> q\,=\,a\,+\,2b\,+\,4c
(3, r) ==> r\,=\,a\,+\,3b\,+\,9c

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 1 &amp; 2 &amp; 4 &amp; q \\<br /> 1 &amp; 3 &amp; 9 &amp; r<br /> \end{array} \right]<br /> \end{displaymath}

R_2\,=\,R_2\,-\,R_1
R_3\,=\,R_3\,-\,R_1

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 2 &amp; 8 &amp; r - p<br /> \end{array} \right]<br /> \end{displaymath}

R_3\,=\,R_3\,-\,2R_2

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 0 &amp; 2 &amp; r - 2q + p<br /> \end{array} \right]<br /> \end{displaymath}

R_3\,=\frac{1}{2}\,R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 3 &amp; q - p \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2} r - q + \frac{1}{2} p<br /> \end{array} \right]<br /> \end{displaymath}

R_2\,=\,R_2\,-\,3R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 1 &amp; 1 &amp; p \\<br /> 0 &amp; 1 &amp; 0 &amp; -\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2} r - q + \frac{1}{2} p<br /> \end{array} \right]<br /> \end{displaymath}

R_1\,=\,R_1\,-\,R_2\,-\,R_3

\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 &amp; 0 &amp; 0 &amp; 3\,p\,-\,3\,q\,+\,r \\<br /> 0 &amp; 1 &amp; 0 &amp; -\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r \\<br /> 0 &amp; 0 &amp; 1 &amp; \frac{1}{2} r - q + \frac{1}{2} p<br /> \end{array} \right]<br /> \end{displaymath}

a\,=\,3\,p\,-\,3\,q\,+\,r
b\,=\,-\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r
c\,=\,\frac{1}{2} r - q + \frac{1}{2} p


f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2
f\left(t\right)\,=\,\left(3\,p\,-\,3\,q\,+\,r\right)\,+\,\left[-\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r\right]\,t\,+\,\left[\frac{1}{2} r - q + \frac{1}{2} p\right]\,t^2
f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,+\,\frac{1}{2}\,p\,t^2\,-\,q\,t^2\,+\,4\,q\,t\,-\,\frac{5}{2}\,p\,t\,-\,\frac{3}{2}\,r\,t\,+\,3\,p\,+\,r\,-\,3\,q

p\,=\,8
q\,=\,12
r\,=\,3

So now it works for these numbers!

f\,(\,t\,)\,=\,-\frac{13}{2}\,t^2\,+\,\frac{47}{2}\,t\,-\,9

f\,(\,1\,)\,=\,-\frac{13}{2}\,(\,1\,)^2\,+\,\frac{47}{2}\,(\,1\,)\,-\,9\,=\,8
f\,(\,2\,)\,=\,-\frac{13}{2}\,(\,2\,)^2\,+\,\frac{47}{2}\,(\,2\,)\,-\,9\,=\,12
f\,(\,3\,)\,=\,-\frac{13}{2}\,(\,3\,)^2\,+\,\frac{47}{2}\,(\,3\,)\,-\,9\,=\,3

But how can I figure (or prove) whether or not a polynomial exists for all values of p, q, and r? There does exist such a polynomial for all p, q, and r right?
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
48
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K