Find Projectile Flight Time Given Only Maximum Height

Click For Summary

Homework Help Overview

The discussion revolves around determining the flight time of a projectile given only its maximum height. Participants are exploring the relationship between maximum height, flight time, and the factors influencing projectile motion, particularly focusing on the vertical component of motion.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss the implications of having only maximum height to determine flight time, questioning how different angles and velocities can yield the same height but different flight times. They also explore the idea of analyzing the problem from different frames of reference.

Discussion Status

Some participants have offered hints to analyze the vertical motion and consider free fall, suggesting a productive direction for understanding the problem. There is an acknowledgment of the complexity involved in relating maximum height to flight time.

Contextual Notes

Participants note the challenge of not having the initial upward velocity and the implications of different projectile angles on flight time. The discussion reflects on the constraints of the problem as presented in the homework statement.

trryan5
Messages
2
Reaction score
3
Homework Statement
A projectile reaches a maximum height of 14.5 meters and travels a horizontal distance of 52.6 meters. How long was it in the air?
Relevant Equations
Vfy = V0y - 9.8t
I've been trying some online projectile problems. Specifically, I was using this one on master difficulty, looking at row e. It uses a random number generator; I shared the data I received in the Homework Statement above.

According to the help section, you can solve this with the formula given, but I don't see how. In fact, they seem to suggest that you don't even need the horizontal displacement, and can figure out the flight time of a projectile with just its maximum height, but there are lots of combinations of angles and velocity that will produce the same maximum height with different flight times.

I sort of cheated my way into a solution using this calculator. Note the calculator can't solve for time with just the two pieces of data given. What I did was put in horizontal distance (and initial height of 0) and start guessing at times until I found that 3.44 seconds produces a height of 14.5 meters.

Can anyone explain to me the correct approach to solving this problem?
 
Physics news on Phys.org
trryan5 said:
In fact, they seem to suggest that you don't even need the horizontal displacement, and can figure out the flight time of a projectile with just its maximum height,
That is correct.
trryan5 said:
but there are lots of combinations of angles and velocity that will produce the same maximum height with different flight times.
Why do you think this?

Hint: Analyze just the vertical component of the motion. You can play with the kinematic formulas until you can solve it.

Hint2: For an object dropped from that height, how long would it take to fall?
 
  • Informative
Likes   Reactions: dlgoff
trryan5 said:
... figure out the flight time of a projectile with just its maximum height, but there are lots of combinations of angles and velocity that will produce the same maximum height with different flight times.
Consider these three baseball throws:
1654194693973.png


Knowing nothing else, at a guess, do you expect the three of them to have different flight times?

What if I told you they were not three baseball throws, but only one, just viewed from different locations on the field? What would you say about flight time now?
 

Attachments

  • 1654194476041.png
    1654194476041.png
    2.5 KB · Views: 224
  • Informative
  • Like
Likes   Reactions: gmax137 and phinds
Doc Al said:
That is correct.

Why do you think this?

Hint: Analyze just the vertical component of the motion. You can play with the kinematic formulas until you can solve it.

Hint2: For an object dropped from that height, how long would it take to fall?
Ah, now I feel foolish. I was so focused on not knowing the initial upward velocity that I didn't think about analyzing it as an object in free fall.
 
  • Like
Likes   Reactions: berkeman and DaveC426913
trryan5 said:
Ah, now I feel foolish. I was so focused on not knowing the initial upward velocity that I didn't think about analyzing it as an object in free fall.
You could also consider two frames of reference. One at rest relative to the ground. And the other moving with the horizontal velocity of the projectile. The time of flight is the same in both (as it must be), yet the horizontal velocity and displacemet are different in each.
 
  • Like
Likes   Reactions: nasu, SammyS and Doc Al

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
40
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K