Find rate of temperature change using heat capacity, density and area

AI Thread Summary
The discussion focuses on calculating the rate of temperature change using heat capacity, density, and area. The initial calculations yield a rate of heat change (dQ/dt) of 746593.71 W and a mass of approximately 27689.783 kg based on the given density and volume. The main challenge is relating the change in heat to temperature change, with suggestions to use the equation Q = mcΔT and consider the time interval Δt. It is emphasized that dividing the heat equation by Δt can help connect dQ/dt to the temperature change rate. The final goal is to determine the change in temperature using the derived relationships.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
see attached
Relevant Equations
dQ/dt=Ae*5.67E-8*T^4
So first I found rate of heat change using the above equation, with T=883K, e=1, SA= 6*l^2=21.66

Now dQ/dt=746593.71 W

Now I am not sure entirely what to do next. They give density so I likely have to get the mass from that, M=pV,=1.9^3*4037=27689.783 kg.

My issue is that I don't know how to relate change in heat to h=change in temperature.

I could try Q=mc(change in T). But I have change in Q, not Q. Not sure how I would integrate dQ/dT either...

Answer is -0.04121 btw.
 

Attachments

  • question.PNG
    question.PNG
    7.7 KB · Views: 178
Physics news on Phys.org
What is the definition of specific heat capacity? Might be relevant...
 
JoeyBob said:
I could try Q=mc(change in T). But I have change in Q, not Q.
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?
 
TSny said:
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?

So I can find dQ/dt using dQ/dt=A*5.67E-8*T^4

I can find m using m=pV

And I know Q=mc(change in T)

But dQ/dt isn't Q. Or can I just put it in the equation anyways and solve for change in T and it will work?
 
$$\frac{dQ}{dt}=mc\frac{dT}{dt}$$
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top