Find rate of temperature change using heat capacity, density and area

AI Thread Summary
The discussion focuses on calculating the rate of temperature change using heat capacity, density, and area. The initial calculations yield a rate of heat change (dQ/dt) of 746593.71 W and a mass of approximately 27689.783 kg based on the given density and volume. The main challenge is relating the change in heat to temperature change, with suggestions to use the equation Q = mcΔT and consider the time interval Δt. It is emphasized that dividing the heat equation by Δt can help connect dQ/dt to the temperature change rate. The final goal is to determine the change in temperature using the derived relationships.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
see attached
Relevant Equations
dQ/dt=Ae*5.67E-8*T^4
So first I found rate of heat change using the above equation, with T=883K, e=1, SA= 6*l^2=21.66

Now dQ/dt=746593.71 W

Now I am not sure entirely what to do next. They give density so I likely have to get the mass from that, M=pV,=1.9^3*4037=27689.783 kg.

My issue is that I don't know how to relate change in heat to h=change in temperature.

I could try Q=mc(change in T). But I have change in Q, not Q. Not sure how I would integrate dQ/dT either...

Answer is -0.04121 btw.
 

Attachments

  • question.PNG
    question.PNG
    7.7 KB · Views: 177
Physics news on Phys.org
What is the definition of specific heat capacity? Might be relevant...
 
JoeyBob said:
I could try Q=mc(change in T). But I have change in Q, not Q.
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?
 
TSny said:
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?

So I can find dQ/dt using dQ/dt=A*5.67E-8*T^4

I can find m using m=pV

And I know Q=mc(change in T)

But dQ/dt isn't Q. Or can I just put it in the equation anyways and solve for change in T and it will work?
 
$$\frac{dQ}{dt}=mc\frac{dT}{dt}$$
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top