Find the area of a segment of a circle using integration

  • Thread starter Thread starter nafisanazlee
  • Start date Start date
  • Tags Tags
    Area Circle
Click For Summary

Homework Help Overview

The discussion revolves around calculating the area of a segment of a circle defined by the equation x²+y²-6x-8y-35=0, specifically the area enclosed by the circle and the x-axis. Participants are exploring methods to approach this problem using calculus, particularly integration.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss using geometric methods to find the area, such as calculating the area of a triangle and sector. There are attempts to apply calculus by isolating y in the circle's equation to derive functions for integration. Questions arise regarding the correct use of these functions for the area calculation, particularly which function to integrate.

Discussion Status

Some participants have provided guidance on isolating y and integrating between x-intercepts, while others express confusion about the functions derived from the equation. There is acknowledgment of the need to clarify which part of the circle's area is being calculated and how to set up the integral correctly. Multiple interpretations of the functions are being explored, indicating a productive discussion.

Contextual Notes

Participants note that the problem may have been misplaced in the forum and should adhere to specific posting guidelines. There is also mention of confusion regarding the presence of positive values in the function representing the area below the x-axis.

nafisanazlee
Messages
20
Reaction score
2
Mentor note: Moved from a math technical section, so template is not present.
I was asked to calculate the area of the smaller section enclosed by the circle x²+y²-6x-8y-35=0 and the x axis. I've tried to solve it with geometry, using the x-intercepts and the centre of the circle I drew a triangle. Then by subtracting the area of triangle from the area of one particular sector I got the answer. But I couldn't do it with calculus, using the actual function. Can you help me with it? How do I approach?
 
Last edited by a moderator:
Physics news on Phys.org
nafisanazlee said:
I was asked to calculate the area of the smaller section enclosed by the circle x²+y²-6x-8y-35=0 and the x axis. I've tried to solve it with geometry, using the x-intercepts and the centre of the circle I drew a triangle. Then by subtracting the area of triangle from the area of one particular sector I got the answer. But I couldn't do it with calculus, using the actual function. Can you help me with it? How do I approach?
Complete the square in the x and y terms, and then isolate the factored y terms on one side. If you solve for y you will get two functions. One of the functions represents the y values above the x-axis and the other represents the y values below the x-axis. It's the latter of these that you want to use in the integral.

BTW, questions like this one should be posted in the Calculus & Beyond homework section, using the template. I'm going to move this thread to that section.
 
  • Like
Likes   Reactions: nafisanazlee
Mark44 said:
Complete the square in the x and y terms, and then isolate the factored y terms on one side. If you solve for y you will get two functions. One of the functions represents the y values above the x-axis and the other represents the y values below the x-axis. It's the latter of these that you want to use in the integral.

BTW, questions like this one should be posted in the Calculus & Beyond homework section, using the template. I'm going to move this thread to that section.
Thanks for your reply. I actually tried this method but unfortunately this gives me two functions which are the upper half and the lower half of the circle. I get y = 4±√(-x²+6x+51). Could you tell me where I was making a mistake?

.
 

Attachments

  • Screenshot_2023-12-17-13-01-53-999_com.android.chrome.png
    Screenshot_2023-12-17-13-01-53-999_com.android.chrome.png
    15.9 KB · Views: 102
nafisanazlee said:
Thanks for your reply. I actually tried this method but unfortunately this gives me two functions which are the upper half and the lower half of the circle. I get y = 4±√(-x²+6x+51). Could you tell me where I was making a mistake?

.
That all looks good to me. Why do you think there's a mistake?
 
  • Like
Likes   Reactions: nafisanazlee
PeroK said:
That all looks good to me. Why do you think there's a mistake?
Mark said- "One of the functions represents the y values above the x-axis and the other represents the y values below the x-axis. It's the latter of these that you want to use in the integral." But the latter one also contains some positive values of y. Anyways, I now understand using the latter one will give me the area. I was just a bit confused. Thanks for the clarification.
 
nafisanazlee said:
Mark said- "One of the functions represents the y values above the x-axis and the other represents the y values below the x-axis. It's the latter of these that you want to use in the integral." But the latter one also contains some positive values of y. Anyways, I now understand using the latter one will give me the area. I was just a bit confused. Thanks for the clarification.
I would calculaute the area below the x-axis (as this is a single function) and then subtract that from the total area of a circle to get the area above the x-axis.
 
  • Like
Likes   Reactions: nafisanazlee
nafisanazlee said:
Mark said- "One of the functions represents the y values above the x-axis and the other represents the y values below the x-axis...."
I erred in saying the above. One of the functions, the one that starts with "4 + ..." represents the part of the circle above the line y = 4. The other represents the part below that line. To get the area of the part of the circle below the x axis, integrate, with respect to x, between the two x-intercepts. Make sure you set up your integral correctly or you could get a negative value.
 
  • Like
Likes   Reactions: nafisanazlee
Mark44 said:
I erred in saying the above. One of the functions, the one that starts with "4 + ..." represents the part of the circle above the line y = 4. The other represents the part below that line. To get the area of the part of the circle below the x axis, integrate, with respect to x, between the two x-intercepts. Make sure you set up your integral correctly or you could get a negative value.
Thank you so much.
 
You could also solve for ##x## as a function of ##y## and integrate with respect to ##y##. That's pretty straightforward as well.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
5
Views
2K