MHB Find the eigenvectors problem help

Dustinsfl
Messages
2,217
Reaction score
5
Just checking a solution.

$y' = \begin{pmatrix}4 & -1\\ 2 & 1\end{pmatrix}y $
$$
\lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) = 0.
$$
So the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$.
To find the eigenvectors, we must solve $(4 - \lambda)y_1 - y_2 = 0\iff y_2 = (4 - \lambda)y_1$.
Then
$$
y = \begin{pmatrix}1\\ 4 - \lambda\end{pmatrix}.
$$
Now $\mathbf{y_1} = e^{3t}\begin{pmatrix}1\\ 1\end{pmatrix}$ and $\mathbf{y_2} = e^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}$.
Thus, the solution is
$$
y = Ae^{3t}\begin{pmatrix}1\\ 1\end{pmatrix} + Be^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}.
$$
 
Physics news on Phys.org
dwsmith said:
Just checking a solution.

$y' = \begin{pmatrix}4 & -1\\ 2 & 1\end{pmatrix}y $
$$
\lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) = 0.
$$
So the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$.
To find the eigenvectors, we must solve $(4 - \lambda)y_1 - y_2 = 0\iff y_2 = (4 - \lambda)y_1$.
Then
$$
y = \begin{pmatrix}1\\ 4 - \lambda\end{pmatrix}.
$$
Now $\mathbf{y_1} = e^{3t}\begin{pmatrix}1\\ 1\end{pmatrix}$ and $\mathbf{y_2} = e^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}$.
Thus, the solution is
$$
y = Ae^{3t}\begin{pmatrix}1\\ 1\end{pmatrix} + Be^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}.
$$

Yes it's correct. (Yes)
 
Last edited:
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top