MHB Find the eigenvectors problem help

Dustinsfl
Messages
2,217
Reaction score
5
Just checking a solution.

$y' = \begin{pmatrix}4 & -1\\ 2 & 1\end{pmatrix}y $
$$
\lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) = 0.
$$
So the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$.
To find the eigenvectors, we must solve $(4 - \lambda)y_1 - y_2 = 0\iff y_2 = (4 - \lambda)y_1$.
Then
$$
y = \begin{pmatrix}1\\ 4 - \lambda\end{pmatrix}.
$$
Now $\mathbf{y_1} = e^{3t}\begin{pmatrix}1\\ 1\end{pmatrix}$ and $\mathbf{y_2} = e^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}$.
Thus, the solution is
$$
y = Ae^{3t}\begin{pmatrix}1\\ 1\end{pmatrix} + Be^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}.
$$
 
Physics news on Phys.org
dwsmith said:
Just checking a solution.

$y' = \begin{pmatrix}4 & -1\\ 2 & 1\end{pmatrix}y $
$$
\lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) = 0.
$$
So the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$.
To find the eigenvectors, we must solve $(4 - \lambda)y_1 - y_2 = 0\iff y_2 = (4 - \lambda)y_1$.
Then
$$
y = \begin{pmatrix}1\\ 4 - \lambda\end{pmatrix}.
$$
Now $\mathbf{y_1} = e^{3t}\begin{pmatrix}1\\ 1\end{pmatrix}$ and $\mathbf{y_2} = e^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}$.
Thus, the solution is
$$
y = Ae^{3t}\begin{pmatrix}1\\ 1\end{pmatrix} + Be^{2t}\begin{pmatrix}1\\ 2\end{pmatrix}.
$$

Yes it's correct. (Yes)
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top