Find the general indefinite integral

phillyolly
Messages
157
Reaction score
0

Homework Statement



Hi, can you please check the two problems? (I have never done such before)

Homework Equations





The Attempt at a Solution

 

Attachments

  • answer.jpg
    answer.jpg
    9.9 KB · Views: 490
Physics news on Phys.org
Be careful in evaluating the definite integral - your answer is right but all of the terms from.your lower limit evaluation.should be in parentheses, the minus sign distributes.

PS- sorry about the periods, my phone is being glitchy!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top