Find the position vector of P

Click For Summary
SUMMARY

The position vector of the intersection point P of the lines defined by the vector equations $r_1=\pmatrix {5 \\ 1}+2\pmatrix {3 \\ -2}$ and $r_2=\pmatrix {-2 \\ 2}+t\pmatrix {4 \\ 1}$ is determined by solving the system of equations derived from equating the two lines. The solution yields the coordinates of point P as $\begin{pmatrix}2 \\ 3\end{pmatrix}$. This confirms that P is represented in the form $r=a+tb$, where $a$ is the position vector and $b$ is the direction vector.

PREREQUISITES
  • Understanding of vector equations and their components
  • Familiarity with solving systems of linear equations
  • Knowledge of vector notation and operations
  • Basic concepts of intersection of lines in a two-dimensional space
NEXT STEPS
  • Study the method of solving systems of equations using substitution and elimination techniques
  • Learn about vector representation in higher dimensions
  • Explore the concept of parametric equations of lines
  • Investigate applications of vector equations in physics and engineering
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector equations and need to understand line intersections and their applications.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The vector equations of two lines are given below

$r_1=\pmatrix {5 \\ 1}+2\pmatrix {3 \\ -2}$, $r_2=\pmatrix {-2 \\ 2}+t\pmatrix {4 \\ 1}$

The lines intersect at the point $$P$$.
Find the position vector of $$P$$

this being in form of $$r=a+tb$$
where $$a$$ is the the position vector
and b is the direction vector.
but not sure if these needs to be converted to line equations (of which not sure how to do) or just use what is given.
 
Physics news on Phys.org
Hello, karush!

Part of your problem makes little sense.

The vector equations of two lines are given below:

. . r_1\:=\:\pmatrix {5 \\ 1}+2\pmatrix{3 \\ \text{-}2} \quad r_2\:=\:\pmatrix {\text{-}2 \\ 2}+t\pmatrix {4 \\ 1}

The lines intersect at the point P.
Find the position vector of P.

this being in form of r\:=\:a+tb . ??
where a is the the position vector
and b is the direction vector. P is a point, not a line!
r_1 \cap r_2:\;{5\choose1} + s{3\choose\text{-}2} \;=\;{\text{-}2\choose2} + t{4\choose1}

. . . . . . . . .\begin{pmatrix}5 + 3s \\ 1-2s \end{pmatrix} \;=\;\begin{pmatrix}\text{-}2 + 4t \\ 2 + t\end{pmatrix}

. . . . . . . . . \begin{Bmatrix}5 + 3s &=& \text{-}2+4t \\ 1-2s &=& 2 + t \end{Bmatrix}

Solve the system of equations: .\begin{Bmatrix}s &-& \text{-}1 \\ t &=& 1 \end{Bmatrix}

Therefore: .P \:=\:{2\choose3}
 
See what you mean, however that was the way it was worded from the book. Thanks for help I am new to this topic
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
31
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K