Find the possible values of angle ##∠ADB##

Click For Summary
The discussion focuses on finding the possible values of angle ∠ADB, with calculations showing that BC equals 10.25 cm using the cosine rule. For part (b), BK is determined to be 3 cm through the sine rule, leading to ∠BDK being 48.59 degrees and consequently ∠ADB being 131.4 degrees. An alternative value of ∠ADB is noted as 48.59 degrees when BD is positioned on the opposite side of the perpendicular line. Participants suggest that providing step-by-step calculations rather than just outcomes would enhance clarity. The conversation emphasizes the importance of precise geometric representation, particularly in non-scaled diagrams.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached ( kindly allow me to post as it is on exam script)
Relevant Equations
Understanding of the Triangle
1686582692210.png


My take:

1686582845878.png


I got ##BC=10.25## cm, using cosine rule...no issue there. For part (b)
##BK=3cm## using sine rule i.e ##\sin 30^0 =\dfrac{BK}{6}##
Thus it follows that ##∠BDK=48.59^0## ...⇒##∠ADB=131.4^0## correct...any other approach?

Also:

##∠ADB=48.59^0## when BD is on the other side of the given perpendiculor line.

cheers guys
 

Attachments

  • 1686584595716.png
    1686584595716.png
    49.5 KB · Views: 138
Last edited:
Physics news on Phys.org
Seem ok to me.
'Not to scale' is an understatement....

And instead of outcomes, post steps: ##\angle ADB = \arcsin 3/4 = ...## is so much clearer !

##\LaTeX ## degrees is ^\circ : ##30^\circ##

##\ ##
 
  • Like
Likes chwala and SammyS
BvU said:
Seem ok to me.
'Not to scale' is an understatement....

And instead of outcomes, post steps: ##\angle ADB = \arcsin 3/4 = ...## is so much clearer !

##\LaTeX ## degrees is ^\circ : ##30^\circ##

##\ ##
@chwala ,

In case you miss @BvU 's post, it bears repeating... on all counts. :wink:
 
The working out suggests first equating ## \sqrt{i} = x + iy ## and suggests that squaring and equating real and imaginary parts of both sides results in ## \sqrt{i} = \pm (1+i)/ \sqrt{2} ## Squaring both sides results in: $$ i = (x + iy)^2 $$ $$ i = x^2 + 2ixy -y^2 $$ equating real parts gives $$ x^2 - y^2 = 0 $$ $$ (x+y)(x-y) = 0 $$ $$ x = \pm y $$ equating imaginary parts gives: $$ i = 2ixy $$ $$ 2xy = 1 $$ I'm not really sure how to proceed from here.