Find the power required to pull loop through constant magnetic field

  • #1
15
0

Homework Statement



The wire shown is being pulled through a constant magnetic field of 0.25 Tesla at 3 m/s.

A) Find the power required to pull the loop at this speed.
B) If the wire has a resistance of 100 ohms, what is the current in the wire?

Homework Equations





The Attempt at a Solution



I am trying to teach myself this problem, as I missed a week of school because of a back surgery and the slides I was given are wholly inadequate. I am not looking for a simple solution, but an explanation and a little bit of guidance to point me in the right direction would be stupendous.

This isn't a homework problem (as in it has a due date) but it is in the back of the book and is listed as difficult.

The picture (I have drawn) is here: http://twitpic.com/7e6nad [Broken]

Thank you all.
 
Last edited by a moderator:
  • #2
Consider the loop consisting of atoms.Each atom has electron's and in metals these electrons are free to move.Due to action of magnetic field we have force on electron as e*(v x B). Here 'x' is cross product of vectors.So electrons move to one end and all protons remain where there are.Thus creating a potential difference and causing a current.And yes power is force is= Force*Velocity=e*(v x B) * v=e*(v^2)*B.
Value of potential Difference=B*l*v
Where l is length of rod.It must be given.
Otherwise use power I^2*R(resistance)=F*v.
Get current.
B is magnetic field and v is velocity of electron and e is charge on electron.
 
Last edited:
  • #3
Power = force x velocity.
Do you know how to calculate the force on the wire in the magnetic field?
 
  • #4
what is the force acting on the wire due to the magnetic field?

q(vxB)=F since there is no electric field.

and current is dq/dt which you could say is qv, but i think power is I2R = P

Power is F*v=P
 
  • #5
Power = force x velocity.
Do you know how to calculate the force on the wire in the magnetic field?

Isn't it F=BILsinθ? But surely that doesn't apply here? There is no length given, after all.

For B) If the wire has a resistance of 100 ohms, what is the current in the wire? I=V/R, but I do not know the voltage, nor am I certain how I can ascertain it with the given information.

I feel that I may have jumped ahead of the class with this problem, but I really want to grasp the material.
 
  • #6
Consider the loop consisting of atoms.Each atom has electron's and in metals these electrons are free to move.Due to action of magnetic field we have force on electron as e*(v x B). Here 'x' is cross product of vectors.So electrons move to one end and all protons remain where there are.Thus creating a potential difference and causing a current.And yes power is force is= Force*Velocity=e*(v x B) * v=e*(v^2)*B.
Value of potential Difference=B*l*v
Where l is length of rod.It must be given.
Otherwise use power I^2*R(resistance)=F*v.
Get current.
B is magnetic field and v is velocity of electron and e is charge on electron.

Length of rod is not given. Truly.

e*(v^2)*B would be 3.6E-19 N?

I^2*r=F*v => I = 1.04E-10 amps? Does that seem correct?
 
  • #7
If you have(Covenant32) calculated correctly then it might be.Method remains as stated.All rest is calculation.
 

Suggested for: Find the power required to pull loop through constant magnetic field

Replies
37
Views
2K
Replies
5
Views
509
Replies
4
Views
474
Replies
13
Views
508
Replies
2
Views
446
Replies
1
Views
453
Back
Top