MHB Find the ratio of lines in a circle

AI Thread Summary
The discussion centers on finding the ratio BC:CD in an irregular quadrilateral ABCD, given two angles. The key insight is that the quadrilateral is inscribed, leading to the conclusion that opposite angles sum to 180 degrees. Utilizing the Law of Sines, the relationship between the sides and angles is established, allowing for the derivation of the ratio. The altitude from point C to line BD simplifies the calculations, ultimately confirming the ratio as 1:√2. The problem illustrates the application of trigonometric principles in solving geometric relationships.
mitaka90
Messages
9
Reaction score
0
I have no idea how to solve this problem.
ABCD is just an irregular Quadrilateral so nothing too special with that figure.
We are looking for the ratio BC:CD and we only have that two angles. I know that the answer is 1:√2, but I have no idea how to find it.
 

Attachments

  • mathproblem.png
    mathproblem.png
    14.1 KB · Views: 107
Mathematics news on Phys.org
mitaka90 said:
I have no idea how to solve this problem.
ABCD is just an irregular Quadrilateral so nothing too special with that figure.
We are looking for the ratio BC:CD and we only have that two angles. I know that the answer is 1:√2, but I have no idea how to find it.

Hi mitaka90! Welcome to MHB! ;)

We are looking at an inscribed or chordic quadrilateral.
Its associated proposition states that its opposite angles sum up to $180^\circ$.
So we have:
$$\angle B + \angle D = 180^\circ \quad \Rightarrow \quad \angle D = 180^\circ - \angle B \tag 1$$

Furthermore, according to the Law of Sines, we have:
$$\frac{BC}{\sin 30^\circ} = \frac{AC}{\sin \angle B} \tag 2$$
respectively:
$$\frac{CD}{\sin 45^\circ} = \frac{AC}{\sin \angle D} \tag 3$$

Combining (1) and (3) gives:
$$\frac{CD}{\sin 45^\circ} = \frac{AC}{\sin(180^\circ - \angle B)} = \frac{AC}{\sin \angle B} \tag 4$$

See what comes next?
 
Yep, pretty straight forward from here. I can't believe how I couldn't work out that there would be some trigonometric functions stuff going on, specifically law of sines, because of the square root in the answer and the angles in the actual problem, lol. Thanks a lot! :) Btw, feel free to delete my first post if you can. I don't know why I've posted two times.
 
By the inscribed angle theorem, $\angle{CDB}=30^\circ$ and $\angle{CBD}=45^\circ$.

Construct the altitude of $\triangle{BCD}$ from $C$ to $\overline{BD}$ and, without a loss of generality, assign it a length of $1$ unit. Now it's easy to determine the (resulting) lengths of $\overline{CD}$ and $\overline{BC}$ and to compute the required ratio.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top