MHB Find the ratio of lines in a circle

AI Thread Summary
The discussion centers on finding the ratio BC:CD in an irregular quadrilateral ABCD, given two angles. The key insight is that the quadrilateral is inscribed, leading to the conclusion that opposite angles sum to 180 degrees. Utilizing the Law of Sines, the relationship between the sides and angles is established, allowing for the derivation of the ratio. The altitude from point C to line BD simplifies the calculations, ultimately confirming the ratio as 1:√2. The problem illustrates the application of trigonometric principles in solving geometric relationships.
mitaka90
Messages
9
Reaction score
0
I have no idea how to solve this problem.
ABCD is just an irregular Quadrilateral so nothing too special with that figure.
We are looking for the ratio BC:CD and we only have that two angles. I know that the answer is 1:√2, but I have no idea how to find it.
 

Attachments

  • mathproblem.png
    mathproblem.png
    14.1 KB · Views: 104
Mathematics news on Phys.org
mitaka90 said:
I have no idea how to solve this problem.
ABCD is just an irregular Quadrilateral so nothing too special with that figure.
We are looking for the ratio BC:CD and we only have that two angles. I know that the answer is 1:√2, but I have no idea how to find it.

Hi mitaka90! Welcome to MHB! ;)

We are looking at an inscribed or chordic quadrilateral.
Its associated proposition states that its opposite angles sum up to $180^\circ$.
So we have:
$$\angle B + \angle D = 180^\circ \quad \Rightarrow \quad \angle D = 180^\circ - \angle B \tag 1$$

Furthermore, according to the Law of Sines, we have:
$$\frac{BC}{\sin 30^\circ} = \frac{AC}{\sin \angle B} \tag 2$$
respectively:
$$\frac{CD}{\sin 45^\circ} = \frac{AC}{\sin \angle D} \tag 3$$

Combining (1) and (3) gives:
$$\frac{CD}{\sin 45^\circ} = \frac{AC}{\sin(180^\circ - \angle B)} = \frac{AC}{\sin \angle B} \tag 4$$

See what comes next?
 
Yep, pretty straight forward from here. I can't believe how I couldn't work out that there would be some trigonometric functions stuff going on, specifically law of sines, because of the square root in the answer and the angles in the actual problem, lol. Thanks a lot! :) Btw, feel free to delete my first post if you can. I don't know why I've posted two times.
 
By the inscribed angle theorem, $\angle{CDB}=30^\circ$ and $\angle{CBD}=45^\circ$.

Construct the altitude of $\triangle{BCD}$ from $C$ to $\overline{BD}$ and, without a loss of generality, assign it a length of $1$ unit. Now it's easy to determine the (resulting) lengths of $\overline{CD}$ and $\overline{BC}$ and to compute the required ratio.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top