Find the tensor that carries out a transformation

Click For Summary
SUMMARY

The discussion focuses on the derivation of the transformation tensor \( K_{\mu \nu} \) in the context of conformal transformations. The key equations include \( dx'^{\mu} = \frac{(1-2 x \cdot a)^2 - 3 x^2 a^2}{(1-2a \cdot x + a^2 x^2)^2} dx^{\mu} \) and \( K_{\mu \nu} = K^2(x) g_{\mu \nu} \), where \( K(x) = \frac{1}{1 + 2 b \cdot x + b^{2}x^{2}} \). The discussion emphasizes the importance of correctly handling the indices and the terms in the numerator and denominator during the transformation process.

PREREQUISITES
  • Understanding of tensor calculus
  • Familiarity with conformal transformations
  • Knowledge of differential geometry
  • Proficiency in manipulating indices in tensor equations
NEXT STEPS
  • Study the properties of conformal transformations in differential geometry
  • Learn about the derivation and application of the metric tensor \( g_{\mu \nu} \)
  • Explore the implications of the transformation tensor \( K_{\mu \nu} \) in physical theories
  • Investigate the role of small parameter approximations in tensor calculus
USEFUL FOR

Mathematicians, physicists, and researchers working in fields involving differential geometry, general relativity, and tensor analysis will benefit from this discussion.

Frostman
Messages
114
Reaction score
17
Homework Statement
Following the non-linear transformation of coordinates (conformal transformation)
##x'^{\mu}=\frac{x^{\mu}-x^2a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}##
with ##a^{\mu}## constant four-vector, the relativistic line element is transformed (obviously) in the following way
##g_{\mu \nu}dx'^{\mu}dx'^{\nu}=K_{\mu \nu}dx^{\mu}dx^{\nu}##
Relevant Equations
Tensor calculus
I got stuck in this calculation, I can't collect everything in terms of ##dx^{\mu}##.

##x'^{\mu}=\frac{x^{\mu}-x^2a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}##

##x'^{\mu}=\frac{x^{\mu}-g_{\alpha \beta}x^{\alpha}x^{\beta}a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}##

##dx'^{\mu}=\frac{dx^{\mu}-a^{\mu}g_{\alpha \beta}(dx^{\alpha}x^{\beta}+x^{\alpha}dx^{\beta})}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}-\frac{(x^{\mu}-x^2a^{\mu})(1-2a_{\nu}dx^{\nu}+a^2g_{\alpha \beta}(dx^{\alpha}x^{\beta}+x^{\alpha}dx^{\beta})}{(1-2a_{\nu}x^{\nu}+a^2x^2)^2}##

##dx'^{\mu}=\frac{dx^{\mu}-2dx\cdot xa^{\mu}}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}-\frac{(x^{\mu}-x^2a^{\mu})(1-2a\cdot dx+2a^2dx \cdot x)}{(1-2a_{\nu}x^{\nu}+a^2x^2)^2}##

##dx'^{\mu}=\frac{(1-2x_{\mu}a^{\mu})dx^{\mu}}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}-\frac{(x^{\mu}-x^2a^{\mu})(1-(2a_{\mu} -2a^2 x_{\mu})dx^{\mu})}{(1-2a_{\nu}x^{\nu}+a^2x^2)^2}##

I stop here, because in the second fraction there is that 1 in the numerator that I don't know how to collect with respect to ##dx^{\mu}##.

I suppose to express ##1## as ##\frac{dx_{\mu}dx^{\mu}}{\sqrt{dx^2}}## but I don't know if is it correct because I leave inside the ##K_{\mu \nu}## this term ##\frac{dx_{\mu}}{\sqrt{dx^2}}##
 
Physics news on Phys.org
That 1 that is causing the problem should not be there.
It disappears in line 3 because the differential of the denominator is
$$-2a_{\nu}dx^{\nu}+a^2g_{\alpha \beta}(dx^{\alpha}x^{\beta}+x^{\alpha}dx^{\beta})
$$
because the derivative of 1 with respect to any variable is 0.
 
  • Like
Likes   Reactions: Frostman and jim mcnamara
To add to andrewkirk: your expression contains mu both as free index and dummy index. In combination with the fact that the 1 without indices should ring alarmbells, you should probably go back to the basics of tensor calculus before considering conformal transformations.
 
andrewkirk said:
That 1 that is causing the problem should not be there.
It disappears in line 3 because the differential of the denominator is
$$-2a_{\nu}dx^{\nu}+a^2g_{\alpha \beta}(dx^{\alpha}x^{\beta}+x^{\alpha}dx^{\beta})
$$
because the derivative of 1 with respect to any variable is 0.
Is there an assumption here that ##g_{\alpha \beta} = \eta_{\alpha \beta}##?
 
andrewkirk said:
That 1 that is causing the problem should not be there.
It disappears in line 3 because the differential of the denominator is
$$-2a_{\nu}dx^{\nu}+a^2g_{\alpha \beta}(dx^{\alpha}x^{\beta}+x^{\alpha}dx^{\beta})
$$
because the derivative of 1 with respect to any variable is 0.
Damn, you're right.

##dx'^{\mu}=\frac{(1-2x_{\mu}a^{\mu})dx^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}-\frac{(x^{\mu}-x^2a^{\mu})(2a^2 x_{\mu}-2a_{\mu})dx^{\mu}}{(1-2a_{\nu}x^{\nu}+a^2x^2)^2}##

##dx'^{\mu}=(\frac{1-2x_{\mu}a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}-\frac{(x^{\mu}-x^2a^{\mu})(2a^2 x_{\mu}-2a_{\mu})}{(1-2a_{\nu}x^{\nu}+a^2x^2)^2})dx^{\mu}##

Renaming

##Q = 1-2a_{\nu}x^{\nu}+a^2x^2##

## dx'^{\mu}=\Big[\frac{1-2x \cdot a}{Q}-\frac{4x^2a^2-2x \cdot a -2x^2 a^2 x \cdot a}{Q^2}\Big]dx^{\mu} ##

## dx'^{\mu}=\frac{1-2 x \cdot a + x^2 a^2 -2 x \cdot a + 4(x \cdot a)^2 -2x^2 a^2 x \cdot a -4 x^2 a^2 +2 x \cdot a + 2 x^2 a^2 x \cdot a }{Q^2}dx^{\mu} ##

## dx'^{\mu}=\frac{1-2 x \cdot a + 4(x \cdot a)^2 -3 x^2 a^2}{Q^2}dx^{\mu} ##

## dx'^{\mu}=\frac{(1-2 x \cdot a)^2 -3 x^2 a^2}{Q^2}dx^{\mu} = \frac{(1-2 x \cdot a)^2 -3 x^2 a^2}{(1-2a \cdot x+a^2x^2)^2}dx^{\mu}##

Now I think I have done the right math. I just have to apply the initial definition and verify that:

##g_{\mu \nu}dx'^{\mu}dx'^{\nu}=K_{\mu \nu}dx^{\mu}dx^{\nu}##

So I have:

## K_{\mu \nu}=\Big[ \frac{(1-2 x \cdot a)^2 -3 x^2 a^2}{(1-2a \cdot x+a^2x^2)^2} \Big]^2g_{\mu \nu} ##

Is it correct?
 
Frostman said:
So I have:
K_{\mu \nu}=\Big[ \frac{(1-2 x \cdot a)^2 -3 x^2 a^2}{(1-2a \cdot x+a^2x^2)^2} \Big]^2g_{\mu \nu}
Is it correct?
No, it is not correct. You have \bar{x}^{\mu} = K(x) (x^{\mu} + b^{\mu}x^{2}), \ \ \ \ \ (1a) where K(x) = \frac{1}{1 + 2 b \cdot x + b^{2}x^{2}} . \ \ \ \ \ \ (1b)

So, g_{\mu\nu} \ d\bar{x}^{\mu} \ d\bar{x}^{\nu} = g_{\mu\nu} \frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}}\frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} \ dx^{\rho} \ dx^{\sigma} . Thus K_{\rho\sigma} = g_{\mu\nu} \ \frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}}\frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} . \ \ \ \ \ \ \ \ (2) Now, from (1) you find \frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}} = K(x) \left( \delta^{\mu}_{\rho} + 2b^{\mu}x_{\rho} - \frac{2(x^{\mu} + b^{\mu}x^{2})(b_{\rho} + b^{2}x_{\rho})}{1 + 2 b \cdot x + b^{2}x^{2}}\right) . If we define the matrix \Lambda^{\mu}{}_{\rho} (x,b) = \delta^{\mu}_{\rho} + 2b^{\mu}x_{\rho} - \frac{2(x^{\mu} + b^{\mu}x^{2})(b_{\rho} + b^{2}x_{\rho})}{1 + 2 b \cdot x + b^{2}x^{2}} , \ \ \ (3) then \frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}} = K(x) \Lambda^{\mu}{}_{\rho} (x,b). Thus, Eq.(2) becomes K_{\rho\sigma} = K^{2}(x) \Lambda^{\mu}{}_{\rho} \ \Lambda^{\nu}{}_{\sigma} \ g_{\mu\sigma} . \ \ \ \ (4) So, the problem reduced to finding the properties of the local matrix \Lambda (x,b). To do this, it is sufficient to take the parameters b^{\mu} to be very small, i.e., in Eq.(3), set b^{2} \approx b^{3} \approx \cdots \approx 0: \Lambda^{\mu}{}_{\rho} \approx \delta^{\mu}_{\rho} + 2 b^{\mu} \ x_{\rho} - 2 b_{\rho} \ x^{\mu} . So, to first order in b^{\mu} we have \Lambda^{\mu}{}_{\rho} (x , b) = \delta^{\mu}_{\rho} + 2 g_{\rho \tau} (b^{\mu}x^{\tau} - b^{\tau}x^{\mu}) . Now, if you define \omega^{\mu\tau} \equiv 2 (b^{\mu}x^{\tau} - b^{\tau}x^{\mu}) = - \omega^{\tau \mu} , then \Lambda^{\mu}{}_{\rho} = \delta^{\mu}_{\rho} + g_{\rho\tau}\omega^{\mu\tau} = \delta^{\mu}_{\rho} + \omega^{\mu}{}_{\rho} . Using this expression for \Lambda, you can easily show that g_{\mu\nu}\Lambda^{\mu}{}_{\rho} \ \Lambda^{\nu}{}_{\sigma} = g_{\rho\sigma} . Finally, substituting this result in Eq.(4), you get K_{\rho\sigma} = K^{2}(x) \ g_{\rho\sigma} .
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K