Find the total number of subtraction remaining 1111?

  • Thread starter Thread starter Helly123
  • Start date Start date
  • Tags Tags
    Algebra
AI Thread Summary
The discussion revolves around a math problem involving the subtraction of a 4-digit number from a 5-digit number, resulting in 11111, while using all digits from 1 to 9. Participants express confusion over the problem's wording and attempt to clarify its requirements. A solution is proposed with the example of 19753 - 8642 = 11111, but questions arise about the total number of subtractions needed to reach this result. The conversation highlights the complexity of finding unique solutions and the challenges posed by the problem's phrasing. Ultimately, the thread emphasizes the need for clearer mathematical questions to avoid confusion.
Helly123
Messages
581
Reaction score
20

Homework Statement


15_Mat_B_1.5.png


Homework Equations

The Attempt at a Solution


5 digits minus 4 digit remaining 11111?
if the 5 digit = 20000
and the 4 digit = 8889
so remaining 11111

digits 1 to 9 have been used?
what am I supposed to do?
 
Physics news on Phys.org
Helly123 said:

Homework Statement


View attachment 206408

Homework Equations



The Attempt at a Solution


5 digits minus 4 digit remaining 11111?
if the 5 digit = 20000
and the 4 digit = 8889
so remaining 11111

digits 1 to 9 have been used?
what am I supposed to do?
Wow. The wording of this problem had me stumped. I had to read it many times before maybe figuring out what it's asking.

I think it must mean:

Suppose A and B have 5 and 4 digits respectively, and that A − B = 11111 . Furthermore, all digits 1 - 9 are used in writing the combination of A and B.
What are all of the possible sets of numbers A and B for which this is true?​
.
 
SammyS said:
Wow. The wording of this problem had me stumped. I had to read it many times before maybe figuring out what it's asking.

I think it must mean:

Suppose A and B have 5 and 4 digits respectively, and that A − B = 11111 . Furthermore, all digits 1 - 9 are used in writing the combination of A and B.
What are all of the possible sets of numbers A and B for which this is true?​
.
I get 19753 - 8642 = 11111. But i don't know, total number of substractions? 8+6+4+2 = 20... the key answer different
 
Helly123 said:
I get 19753 - 8642 = 11111. But i don't know, total number of subtractions? 8+6+4+2 = 20... the key answer different
As long as each pair, {9, 8}, {7, 6}, {5, 4}, {3, 2} is lined up together, you will have the correct result.

Can you show that the leading digit in the 5 digit number can't be a 2 ?
 
SammyS said:
As long as each pair, {9, 8}, {7, 6}, {5, 4}, {3, 2} is lined up together, you will have the correct result.

Can you show that the leading digit in the 5 digit number can't be a 2 ?
The leading number can't be 2, because that leading number won't be substracted , thus is 1. ?
 
How do we get a "number of subtractions" that way?

The way I interpreted it, we start with a 5-digit number, let's say 35791, and then subtract a 4-digit number, let's say 2468, repeatedly until the result is 11111:
35791-n*2468= 11111
This has n=10 as solution.

With that interpretation we don't get a unique solution, on the other hand, as we have n=10 and n=1 as examples already.
Helly123 said:
The leading number can't be 2, because that leading number won't be substracted , thus is 1. ?
It is a bit more complicated as the 4-digit number could start with 9.

Do you know the intended answer?
 
Poorly worded questions honestly but I think that mfb's interpretation is probably correct
 

Similar threads

Back
Top