Find the values of A, B, and C such that the action is a minimum

Click For Summary

Homework Help Overview

The discussion revolves around finding the constants A, B, and C in the equation of motion for a particle subjected to a potential, with the goal of minimizing the action. The context involves concepts from classical mechanics, specifically Lagrangian mechanics.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to derive the values of A, B, and C by applying Lagrangian mechanics and differentiating the equation of motion. Some participants question the validity of integrating the acceleration as if it were constant and emphasize the need to compute the action for minimization.

Discussion Status

The discussion is ongoing, with participants exploring different interpretations of the problem. Some guidance has been offered regarding the need to minimize the action and the correct treatment of constants in the equations. There is no explicit consensus on the approach taken by the original poster.

Contextual Notes

Participants note that the problem specifies the particle's motion from 0 to a in a time interval t0, which is a crucial aspect that needs to be addressed in the solution. There is also a mention of the assumption that A, B, and C should be treated as constants rather than functions of time.

Istiak
Messages
158
Reaction score
12
Homework Statement
A particle is subjected to the potential V (x) = −F x, where F is a constant. The
particle travels from x = 0 to x = a in a time interval t0 . Assume the motion of the
particle can be expressed in the form ##x(t) = A + B t + C t^2## . Find the values of A, B,
and C such that the action is a minimum.
Relevant Equations
Lagrangian
> A particle is subjected to the potential V (x) = −F x, where F is a constant. The
particle travels from x = 0 to x = a in a time interval t0 . Assume the motion of the
particle can be expressed in the form ##x(t) = A + B t + C t^2## . Find the values of A, B,
and C such that the action is a minimum.

I was thinking it can solved using Lagrangian rather than Hamilton. There's no frictional force.

$$L=\frac{1}{2}m\dot{x}^2+Fx$$
$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})-\frac{\partial L}{\partial x}=0$$
$$m\ddot{x}=F$$
$$\ddot{x}=\frac{F}{m}$$
Differentiate ##x(t)## twice. $$2C=\frac{F}{m}=>C=\frac{F}{2m}$$

For finding B I was thinking to integrate ##\ddot{x}## once. $$\dot{x}=\int \ddot{x} \mathrm dt$$
$$=\ddot{x}t$$
initial position is 0 so, not writing constant.

$$\dot{x}=\frac{F}{m}$$
Differentiate ##x(t)## once.
$$B+2Ct=\frac{F}{m}$$
$$B=\frac{F}{m}-\frac{2Ft}{2m}$$
$$=-\frac{Ft}{2m}$$

Again, going to integrate ##\ddot{x}## twice.
$$x=\int \int \ddot{x} dt dt$$
$$=\frac{\ddot{x}t^2}{2}$$

initial velocity and initial position is 0.

$$x=\frac{Ft^2}{2m}$$
$$A+Bt+Ct^2=\frac{Ft^2}{2m}$$
$$A=\frac{Ft^2+Ft-F}{2m}$$

According to my, I think that C is the minimum (I think B is cause, B is negative; negative is less than positive). And, A is maximum. Did I do any mistake?
 
  • Wow
Likes   Reactions: PeroK
Physics news on Phys.org
Where to begin?

First, you were supposed to compute the action and minimise it.

Everything you did from integrating ##\ddot x## got pretty wild. You definitely cannot integrate ##\ddot x## as though it were constant.

##A, B, C## were supposed to be constants, not functions of ##t##.
 
PeroK said:
Where to begin?

First, you were supposed to compute the action and minimise it.

Everything you did from integrating ##\ddot x## got pretty wild. You definitely cannot integrate ##\ddot x## as though it were constant.

##A, B, C## were supposed to be constants, not functions of ##t##.
Umm, I had found ##F=m\ddot{x}## 🤔. couldn't get you... then started differentiating ##x## function.
 
Istiakshovon said:
Umm, I had found ##F=m\ddot{x}## 🤔. couldn't get you... then started differentiating ##x## function.
You ignored most things in the question:

It asked you to minimise the action; it told you the particle moved from ##0## to ##a## in time ##t_0##; it gave you the equation of the trajectory.

You didn't do the problem that was asked.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K